Parameter Reference

This list is auto-generated from the source code and contains the most recent parameter documentation.

Attitude Q estimator

The module where these parameters are defined is: modules/attitude_estimator_q.

NameDescriptionMin > Max (Incr.)DefaultUnits
ATT_ACC_COMP (INT32)

Acceleration compensation based on GPS velocity

1
ATT_BIAS_MAX (FLOAT)

Gyro bias limit

0 > 2 0.05 rad/s
ATT_EXT_HDG_M (INT32)

External heading usage mode (from Motion capture/Vision) Set to 1 to use heading estimate from vision. Set to 2 to use heading from motion capture

Values:
  • 0: None
  • 1: Vision
  • 2: Motion Capture
0 > 2 0
ATT_MAG_DECL (FLOAT)

Magnetic declination, in degrees

Comment: This parameter is not used in normal operation, as the declination is looked up based on the GPS coordinates of the vehicle.

0.0 deg
ATT_MAG_DECL_A (INT32)

Automatic GPS based declination compensation

1
ATT_W_ACC (FLOAT)

Complimentary filter accelerometer weight

0 > 1 0.2
ATT_W_EXT_HDG (FLOAT)

Complimentary filter external heading weight

0 > 1 0.1
ATT_W_GYRO_BIAS (FLOAT)

Complimentary filter gyroscope bias weight

0 > 1 0.1
ATT_W_MAG (FLOAT)

Complimentary filter magnetometer weight

Comment: Set to 0 to avoid using the magnetometer.

0 > 1 0.1

Battery Calibration

NameDescriptionMin > Max (Incr.)DefaultUnits
BAT_A_PER_V (FLOAT)

Battery current per volt (A/V)

Comment: The voltage seen by the 3.3V ADC multiplied by this factor will determine the battery current. A value of -1 means to use the board default.

Module: modules/sensors

-1.0
BAT_CAPACITY (FLOAT)

Battery capacity

Comment: Defines the capacity of the attached battery.

Reboot required: true

Module: lib/battery

-1.0 > 100000 (50) -1.0 mAh
BAT_CNT_V_CURR (FLOAT)

Scaling from ADC counts to volt on the ADC input (battery current)

Comment: This is not the battery current, but the intermediate ADC voltage. A value of -1 signifies that the board defaults are used, which is highly recommended.

Module: modules/sensors

-1.0
BAT_CNT_V_VOLT (FLOAT)

Scaling from ADC counts to volt on the ADC input (battery voltage)

Comment: This is not the battery voltage, but the intermediate ADC voltage. A value of -1 signifies that the board defaults are used, which is highly recommended.

Module: modules/sensors

-1.0
BAT_CRIT_THR (FLOAT)

Critical threshold

Comment: Sets the threshold when the battery will be reported as critically low. This has to be lower than the low threshold. This threshold commonly will trigger RTL.

Reboot required: true

Module: lib/battery

0.05 > 0.1 (0.01) 0.07 norm
BAT_EMERGEN_THR (FLOAT)

Emergency threshold

Comment: Sets the threshold when the battery will be reported as dangerously low. This has to be lower than the critical threshold. This threshold commonly will trigger landing.

Reboot required: true

Module: lib/battery

0.03 > 0.07 (0.01) 0.05 norm
BAT_LOW_THR (FLOAT)

Low threshold

Comment: Sets the threshold when the battery will be reported as low. This has to be higher than the critical threshold.

Reboot required: true

Module: lib/battery

0.12 > 0.4 (0.01) 0.15 norm
BAT_N_CELLS (INT32)

Number of cells

Comment: Defines the number of cells the attached battery consists of.

Values:
  • 0: Unconfigured
  • 2: 2S Battery
  • 3: 3S Battery
  • 4: 4S Battery
  • 5: 5S Battery
  • 6: 6S Battery
  • 7: 7S Battery
  • 8: 8S Battery
  • 9: 9S Battery
  • 10: 10S Battery
  • 11: 11S Battery
  • 12: 12S Battery
  • 13: 13S Battery
  • 14: 14S Battery
  • 15: 15S Battery
  • 16: 16S Battery

Reboot required: true

Module: lib/battery

0 S
BAT_R_INTERNAL (FLOAT)

Explicitly defines the per cell internal resistance

Comment: If non-negative, then this will be used in place of BAT_V_LOAD_DROP for all calculations.

Reboot required: true

Module: lib/battery

-1.0 > 0.2 -1.0 Ohms
BAT_SOURCE (INT32)

Battery monitoring source

Comment: This parameter controls the source of battery data. The value 'Power Module' means that measurements are expected to come from a power module. If the value is set to 'External' then the system expects to receive mavlink battery status messages.

Values:
  • 0: Power Module
  • 1: External

Module: modules/sensors

0 > 1 0
BAT_V_CHARGED (FLOAT)

Full cell voltage (5C load)

Comment: Defines the voltage where a single cell of the battery is considered full under a mild load. This will never be the nominal voltage of 4.2V

Reboot required: true

Module: lib/battery

(0.01) 4.05 V
BAT_V_DIV (FLOAT)

Battery voltage divider (V divider)

Comment: This is the divider from battery voltage to 3.3V ADC voltage. If using e.g. Mauch power modules the value from the datasheet can be applied straight here. A value of -1 means to use the board default.

Module: modules/sensors

-1.0
BAT_V_EMPTY (FLOAT)

Empty cell voltage (5C load)

Comment: Defines the voltage where a single cell of the battery is considered empty. The voltage should be chosen before the steep dropoff to 2.8V. A typical lithium battery can only be discharged down to 10% before it drops off to a voltage level damaging the cells.

Reboot required: true

Module: lib/battery

(0.01) 3.5 V
BAT_V_LOAD_DROP (FLOAT)

Voltage drop per cell on full throttle

Comment: This implicitely defines the internal resistance to maximum current ratio and assumes linearity. A good value to use is the difference between the 5C and 20-25C load. Not used if BAT_R_INTERNAL is set.

Reboot required: true

Module: lib/battery

0.07 > 0.5 (0.01) 0.3 V
BAT_V_OFFS_CURR (FLOAT)

Offset in volt as seen by the ADC input of the current sensor

Comment: This offset will be subtracted before calculating the battery current based on the voltage.

Module: modules/sensors

0.0

Camera Control

The module where these parameters are defined is: modules/camera_feedback.

NameDescriptionMin > Max (Incr.)DefaultUnits
CAM_FBACK_MODE (INT32)

Camera feedback mode

Comment: Sets the camera feedback mode.

Values:
  • 0: Disabled
  • 1: Feedback on trigger
0 > 1 0

Camera trigger

The module where these parameters are defined is: drivers/camera_trigger.

NameDescriptionMin > Max (Incr.)DefaultUnits
TRIG_ACT_TIME (FLOAT)

Camera trigger activation time

Comment: This parameter sets the time the trigger needs to pulled high or low.

0.1 > 3000 40.0 ms
TRIG_DISTANCE (FLOAT)

Camera trigger distance

Comment: Sets the distance at which to trigger the camera.

0 > ? (1) 25.0 m
TRIG_INTERFACE (INT32)

Camera trigger Interface

Comment: Selects the trigger interface

Values:
  • 1: GPIO
  • 2: Seagull MAP2 (over PWM)
  • 3: MAVLink (forward via MAV_CMD_IMAGE_START_CAPTURE)
  • 4: Generic PWM (IR trigger, servo)

Reboot required: true

4
TRIG_INTERVAL (FLOAT)

Camera trigger interval

Comment: This parameter sets the time between two consecutive trigger events

4.0 > 10000.0 40.0 ms
TRIG_MODE (INT32)

Camera trigger mode

Values:
  • 0: Disable
  • 1: Time based, on command
  • 2: Time based, always on
  • 3: Distance based, always on
  • 4: Distance based, on command (Survey mode)

Reboot required: true

0 > 4 0
TRIG_PINS (INT32)

Camera trigger pin

Comment: Selects which pin is used, ranges from 1 to 6 (AUX1-AUX6 on px4fmu-v2 and the rail pins on px4fmu-v4). The PWM interface takes two pins per camera, while relay triggers on every pin individually. Example: Value 56 would trigger on pins 5 and 6. For GPIO mode Pin 6 will be triggered followed by 5. With a value of 65 pin 5 will be triggered followed by 6. Pins may be non contiguous. I.E. 16 or 61. In GPIO mode the delay pin to pin is < .2 uS.

Reboot required: true

1 > 123456 56
TRIG_POLARITY (INT32)

Camera trigger polarity

Comment: This parameter sets the polarity of the trigger (0 = active low, 1 = active high )

Values:
  • 0: Active low
  • 1: Active high
0 > 1 0

Circuit Breaker

The module where these parameters are defined is: lib/circuit_breaker.

NameDescriptionMin > Max (Incr.)DefaultUnits
CBRK_AIRSPD_CHK (INT32)

Circuit breaker for airspeed sensor

Comment: Setting this parameter to 162128 will disable the check for an airspeed sensor. WARNING: ENABLING THIS CIRCUIT BREAKER IS AT OWN RISK

Reboot required: true

0 > 162128 0
CBRK_BUZZER (INT32)

Circuit breaker for disabling buzzer

Comment: Setting this parameter to 782097 will disable the buzzer audio notification. WARNING: ENABLING THIS CIRCUIT BREAKER IS AT OWN RISK

Reboot required: true

0 > 782097 0
CBRK_ENGINEFAIL (INT32)

Circuit breaker for engine failure detection

Comment: Setting this parameter to 284953 will disable the engine failure detection. If the aircraft is in engine failure mode the engine failure flag will be set to healthy WARNING: ENABLING THIS CIRCUIT BREAKER IS AT OWN RISK

Reboot required: true

0 > 284953 284953
CBRK_FLIGHTTERM (INT32)

Circuit breaker for flight termination

Comment: Setting this parameter to 121212 will disable the flight termination action. --> The IO driver will not do flight termination if requested by the FMU WARNING: ENABLING THIS CIRCUIT BREAKER IS AT OWN RISK

Reboot required: true

0 > 121212 121212
CBRK_GPSFAIL (INT32)

Circuit breaker for GPS failure detection

Comment: Setting this parameter to 240024 will disable the GPS failure detection. If this check is enabled, then the sensor check will fail if the GPS module is missing. It will also check for excessive signal noise on the GPS receiver and warn the user if detected. WARNING: ENABLING THIS CIRCUIT BREAKER IS AT OWN RISK

Reboot required: true

0 > 240024 0
CBRK_IO_SAFETY (INT32)

Circuit breaker for IO safety

Comment: Setting this parameter to 22027 will disable IO safety. WARNING: ENABLING THIS CIRCUIT BREAKER IS AT OWN RISK

Reboot required: true

0 > 22027 0
CBRK_RATE_CTRL (INT32)

Circuit breaker for rate controller output

Comment: Setting this parameter to 140253 will disable the rate controller uORB publication. WARNING: ENABLING THIS CIRCUIT BREAKER IS AT OWN RISK

Reboot required: true

0 > 140253 0
CBRK_SUPPLY_CHK (INT32)

Circuit breaker for power supply check

Comment: Setting this parameter to 894281 will disable the power valid checks in the commander. WARNING: ENABLING THIS CIRCUIT BREAKER IS AT OWN RISK

Reboot required: true

0 > 894281 0
CBRK_USB_CHK (INT32)

Circuit breaker for USB link check

Comment: Setting this parameter to 197848 will disable the USB connected checks in the commander. WARNING: ENABLING THIS CIRCUIT BREAKER IS AT OWN RISK

Reboot required: true

0 > 197848 0
CBRK_VELPOSERR (INT32)

Circuit breaker for position error check

Comment: Setting this parameter to 201607 will disable the position and velocity accuracy checks in the commander. WARNING: ENABLING THIS CIRCUIT BREAKER IS AT OWN RISK

Reboot required: true

0 > 201607 0

Commander

The module where these parameters are defined is: modules/commander.

NameDescriptionMin > Max (Incr.)DefaultUnits
COM_ARM_AUTH (INT32)

Arm authorization parameters, this uint32_t will be split between starting from the LSB: - 8bits to authorizer system id - 16bits to authentication method parameter, this will be used to store a timeout for the first 2 methods but can be used to another parameter for other new authentication methods. - 7bits to authentication method - one arm = 0 - two step arm = 1 * the MSB bit is not used to avoid problems in the conversion between int and uint

Comment: Default value: (10 << 0 | 1000 << 8 | 0 << 24) = 256010 - authorizer system id = 10 - authentication method parameter = 10000msec of timeout - authentication method = during arm

256010
COM_ARM_EKF_AB (FLOAT)

Maximum value of EKF accelerometer delta velocity bias estimate that will allow arming. Note: ekf2 will limit the delta velocity bias estimate magnitude to be less than EKF2_ABL_LIM * FILTER_UPDATE_PERIOD_MS * 0.001 so this parameter must be less than that to be useful

0.001 > 0.01 (0.0001) 2.4e-3 m/s
COM_ARM_EKF_GB (FLOAT)

Maximum value of EKF gyro delta angle bias estimate that will allow arming

0.0001 > 0.0017 (0.0001) 8.7e-4 rad
COM_ARM_EKF_HGT (FLOAT)

Maximum EKF height innovation test ratio that will allow arming

0.1 > 1.0 (0.05) 1.0 m
COM_ARM_EKF_POS (FLOAT)

Maximum EKF position innovation test ratio that will allow arming

0.1 > 1.0 (0.05) 0.5 m
COM_ARM_EKF_VEL (FLOAT)

Maximum EKF velocity innovation test ratio that will allow arming

0.1 > 1.0 (0.05) 0.5 m/s
COM_ARM_EKF_YAW (FLOAT)

Maximum EKF yaw innovation test ratio that will allow arming

0.1 > 1.0 (0.05) 0.5 rad
COM_ARM_IMU_ACC (FLOAT)

Maximum accelerometer inconsistency between IMU units that will allow arming

0.1 > 1.0 (0.05) 0.7 m/s/s
COM_ARM_IMU_GYR (FLOAT)

Maximum rate gyro inconsistency between IMU units that will allow arming

0.02 > 0.3 (0.01) 0.25 rad/s
COM_ARM_MAG (FLOAT)

Maximum magnetic field inconsistency between units that will allow arming

0.05 > 0.5 (0.05) 0.15 Gauss
COM_ARM_MIS_REQ (INT32)

Require valid mission to arm

Comment: The default allows to arm the vehicle without a valid mission.

0
COM_ARM_SWISBTN (INT32)

Arm switch is only a button

Comment: The default uses the arm switch as real switch. If parameter set button gets handled like stick arming.

Values:
  • 0: Arm switch is a switch that stays on when armed
  • 1: Arm switch is a button that only triggers arming and disarming
0 > 1 0
COM_ARM_WO_GPS (INT32)

Allow arming without GPS

Comment: The default allows to arm the vehicle without GPS signal.

1
COM_DISARM_LAND (INT32)

Time-out for auto disarm after landing

Comment: A non-zero, positive value specifies the time-out period in seconds after which the vehicle will be automatically disarmed in case a landing situation has been detected during this period. The vehicle will also auto-disarm right after arming if it has not even flown, however the time will be longer by a factor of 5. A value of zero means that automatic disarming is disabled.

0 > 20 (1) 0 s
COM_DL_LOSS_T (INT32)

Datalink loss time threshold

Comment: After this amount of seconds without datalink the data link lost mode triggers

5 > 300 (0.5) 10 s
COM_DL_REG_T (INT32)

Datalink regain time threshold

Comment: After a data link loss: after this this amount of seconds with a healthy datalink the 'datalink loss' flag is set back to false

0 > 3 (0.5) 0 s
COM_EF_C2T (FLOAT)

Engine Failure Current/Throttle Threshold

Comment: Engine failure triggers only below this current value

0.0 > 50.0 (1) 5.0 A/%
COM_EF_THROT (FLOAT)

Engine Failure Throttle Threshold

Comment: Engine failure triggers only above this throttle value

0.0 > 1.0 (0.01) 0.5 norm
COM_EF_TIME (FLOAT)

Engine Failure Time Threshold

Comment: Engine failure triggers only if the throttle threshold and the current to throttle threshold are violated for this time

0.0 > 60.0 (1) 10.0 s
COM_FLIGHT_UUID (INT32)

Next flight UUID

Comment: This number is incremented automatically after every flight on disarming in order to remember the next flight UUID. The first flight is 0.

0 > ? 0
COM_FLTMODE1 (INT32)

First flightmode slot (1000-1160)

Comment: If the main switch channel is in this range the selected flight mode will be applied.

Values:
  • -1: Unassigned
  • 0: Manual
  • 1: Altitude
  • 2: Position
  • 3: Mission
  • 4: Hold
  • 5: Return
  • 6: Acro
  • 7: Offboard
  • 8: Stabilized
  • 9: Rattitude
  • 10: Takeoff
  • 11: Land
  • 12: Follow Me
-1
COM_FLTMODE2 (INT32)

Second flightmode slot (1160-1320)

Comment: If the main switch channel is in this range the selected flight mode will be applied.

Values:
  • -1: Unassigned
  • 0: Manual
  • 1: Altitude
  • 2: Position
  • 3: Mission
  • 4: Hold
  • 5: Return
  • 6: Acro
  • 7: Offboard
  • 8: Stabilized
  • 9: Rattitude
  • 10: Takeoff
  • 11: Land
  • 12: Follow Me
-1
COM_FLTMODE3 (INT32)

Third flightmode slot (1320-1480)

Comment: If the main switch channel is in this range the selected flight mode will be applied.

Values:
  • -1: Unassigned
  • 0: Manual
  • 1: Altitude
  • 2: Position
  • 3: Mission
  • 4: Hold
  • 5: Return
  • 6: Acro
  • 7: Offboard
  • 8: Stabilized
  • 9: Rattitude
  • 10: Takeoff
  • 11: Land
  • 12: Follow Me
-1
COM_FLTMODE4 (INT32)

Fourth flightmode slot (1480-1640)

Comment: If the main switch channel is in this range the selected flight mode will be applied.

Values:
  • -1: Unassigned
  • 0: Manual
  • 1: Altitude
  • 2: Position
  • 3: Mission
  • 4: Hold
  • 5: Return
  • 6: Acro
  • 7: Offboard
  • 8: Stabilized
  • 9: Rattitude
  • 10: Takeoff
  • 11: Land
  • 12: Follow Me
-1
COM_FLTMODE5 (INT32)

Fifth flightmode slot (1640-1800)

Comment: If the main switch channel is in this range the selected flight mode will be applied.

Values:
  • -1: Unassigned
  • 0: Manual
  • 1: Altitude
  • 2: Position
  • 3: Mission
  • 4: Hold
  • 5: Return
  • 6: Acro
  • 7: Offboard
  • 8: Stabilized
  • 9: Rattitude
  • 10: Takeoff
  • 11: Land
  • 12: Follow Me
-1
COM_FLTMODE6 (INT32)

Sixth flightmode slot (1800-2000)

Comment: If the main switch channel is in this range the selected flight mode will be applied.

Values:
  • -1: Unassigned
  • 0: Manual
  • 1: Altitude
  • 2: Position
  • 3: Mission
  • 4: Hold
  • 5: Return
  • 6: Acro
  • 7: Offboard
  • 8: Stabilized
  • 9: Rattitude
  • 10: Takeoff
  • 11: Land
  • 12: Follow Me
-1
COM_HLDL_LOSS_T (INT32)

High Latency Datalink loss time threshold

Comment: After this amount of seconds without datalink the data link lost mode triggers

60 > 3600 120 s
COM_HLDL_REG_T (INT32)

High Latency Datalink regain time threshold

Comment: After a data link loss: after this this amount of seconds with a healthy datalink the 'datalink loss' flag is set back to false

0 > 60 0 s
COM_HOME_H_T (FLOAT)

Home set horizontal threshold

Comment: The home position will be set if the estimated positioning accuracy is below the threshold.

2 > 15 (0.5) 5.0 m
COM_HOME_V_T (FLOAT)

Home set vertical threshold

Comment: The home position will be set if the estimated positioning accuracy is below the threshold.

5 > 25 (0.5) 10.0 m
COM_LOW_BAT_ACT (INT32)

Battery failsafe mode

Comment: Action the system takes on low battery. Defaults to off

Values:
  • 0: Warning
  • 1: Return mode
  • 2: Land mode
  • 3: Return mode at critically low level, Land mode at current position if reaching dangerously low levels
(1) 0
COM_OF_LOSS_T (FLOAT)

Time-out to wait when offboard connection is lost before triggering offboard lost action. See COM_OBL_ACT and COM_OBL_RC_ACT to configure action

0 > 60 (1) 0.0 second
COM_POS_FS_DELAY (INT32)

Loss of position failsafe activation delay

Comment: This sets number of seconds that the position checks need to be failed before the failsafe will activate. The default value has been optimised for rotary wing applications. For fixed wing applications, a larger value between 5 and 10 should be used.

Reboot required: true

1 > 100 1 sec
COM_POS_FS_EPH (FLOAT)

Horizontal position error threshold

Comment: This is the horizontal position error (EPV) threshold that will trigger a failsafe. The default is appropriate for a multicopter. Can be increased for a fixed-wing.

5 m
COM_POS_FS_EPV (FLOAT)

Vertical position error threshold

Comment: This is the vertical position error (EPV) threshold that will trigger a failsafe. The default is appropriate for a multicopter. Can be increased for a fixed-wing.

10 m
COM_POS_FS_GAIN (INT32)

Loss of position probation gain factor

Comment: This sets the rate that the loss of position probation time grows when position checks are failing. The default value has been optimised for rotary wing applications. For fixed wing applications a value of 0 should be used.

Reboot required: true

10
COM_POS_FS_PROB (INT32)

Loss of position probation delay at takeoff

Comment: The probation delay is the number of seconds that the EKF innovation checks need to pass for the position to be declared good after it has been declared bad. The probation delay will be reset to this parameter value when takeoff is detected. After takeoff, if position checks are passing, the probation delay will reduce by one second for every lapsed second of valid position down to a minimum of 1 second. If position checks are failing, the probation delay will increase by COM_POS_FS_GAIN seconds for every lapsed second up to a maximum of 100 seconds. The default value has been optimised for rotary wing applications. For fixed wing applications, a value of 1 should be used.

Reboot required: true

1 > 100 30 sec
COM_RC_ARM_HYST (INT32)

RC input arm/disarm command duration

Comment: The default value of 1000 requires the stick to be held in the arm or disarm position for 1 second.

100 > 1500 1000
COM_RC_IN_MODE (INT32)

RC control input mode

Comment: The default value of 0 requires a valid RC transmitter setup. Setting this to 1 allows joystick control and disables RC input handling and the associated checks. A value of 2 will generate RC control data from manual input received via MAVLink instead of directly forwarding the manual input data.

Values:
  • 0: RC Transmitter
  • 1: Joystick/No RC Checks
  • 2: Virtual RC by Joystick
0 > 2 0
COM_RC_LOSS_T (FLOAT)

RC loss time threshold

Comment: After this amount of seconds without RC connection the rc lost flag is set to true

0 > 35 (0.1) 0.5 s
COM_RC_OVERRIDE (INT32)

Enable RC stick override of auto modes

0
COM_RC_STICK_OV (FLOAT)

RC stick override threshold

Comment: If an RC stick is moved more than by this amount the system will interpret this as override request by the pilot.

5 > 40 (0.05) 12.0 %
COM_VEL_FS_EVH (FLOAT)

Horizontal velocity error threshold

Comment: This is the horizontal velocity error (EVH) threshold that will trigger a failsafe. The default is appropriate for a multicopter. Can be increased for a fixed-wing.

1 m

The module where these parameters are defined is: modules/navigator.

NameDescriptionMin > Max (Incr.)DefaultUnits
NAV_AH_ALT (FLOAT)

Airfield home alt

Comment: Altitude of airfield home waypoint

-50 > ? (0.5) 600.0 m
NAV_AH_LAT (INT32)

Airfield home Lat

Comment: Latitude of airfield home waypoint

-900000000 > 900000000 -265847810 deg * 1e7
NAV_AH_LON (INT32)

Airfield home Lon

Comment: Longitude of airfield home waypoint

-1800000000 > 1800000000 1518423250 deg * 1e7
NAV_DLL_AH_T (FLOAT)

Airfield home wait time

Comment: The amount of time in seconds the system should wait at the airfield home waypoint

0.0 > 3600.0 (1) 120.0 s
NAV_DLL_CHSK (INT32)

Skip comms hold wp

Comment: If set to 1 the system will skip the comms hold wp on data link loss and will directly fly to airfield home

0
NAV_DLL_CH_ALT (FLOAT)

Comms hold alt

Comment: Altitude of comms hold waypoint

-50 > 30000 (0.5) 600.0 m
NAV_DLL_CH_LAT (INT32)

Comms hold Lat

Comment: Latitude of comms hold waypoint

-900000000 > 900000000 -266072120 deg * 1e7
NAV_DLL_CH_LON (INT32)

Comms hold Lon

Comment: Longitude of comms hold waypoint

-1800000000 > 1800000000 1518453890 deg * 1e7
NAV_DLL_CH_T (FLOAT)

Comms hold wait time

Comment: The amount of time in seconds the system should wait at the comms hold waypoint

0.0 > 3600.0 (1) 120.0 s
NAV_DLL_N (INT32)

Number of allowed Datalink timeouts

Comment: After more than this number of data link timeouts the aircraft returns home directly

0 > 1000 2

EKF2

The module where these parameters are defined is: modules/ekf2.

NameDescriptionMin > Max (Incr.)DefaultUnits
EKF2_ABIAS_INIT (FLOAT)

1-sigma IMU accelerometer switch-on bias

Reboot required: true

0.0 > 0.5 0.2 m/s/s
EKF2_ABL_ACCLIM (FLOAT)

Maximum IMU accel magnitude that allows IMU bias learning. If the magnitude of the IMU accelerometer vector exceeds this value, the EKF delta velocity state estimation will be inhibited. This reduces the adverse effect of high manoeuvre accelerations and IMU nonlinerity and scale factor errors on the delta velocity bias estimates

20.0 > 200.0 25.0 m/s/s
EKF2_ABL_GYRLIM (FLOAT)

Maximum IMU gyro angular rate magnitude that allows IMU bias learning. If the magnitude of the IMU angular rate vector exceeds this value, the EKF delta velocity state estimation will be inhibited. This reduces the adverse effect of rapid rotation rates and associated errors on the delta velocity bias estimates

2.0 > 20.0 3.0 rad/s
EKF2_ABL_LIM (FLOAT)

Accelerometer bias learning limit. The ekf delta velocity bias states will be limited to within a range equivalent to +- of this value

0.0 > 0.8 0.4 m/s/s
EKF2_ABL_TAU (FLOAT)

Time constant used by acceleration and angular rate magnitude checks used to inhibit delta velocity bias learning. The vector magnitude of angular rate and acceleration used to check if learning should be inhibited has a peak hold filter applied to it with an exponential decay. This parameter controls the time constant of the decay

0.1 > 1.0 0.5 s
EKF2_ACC_B_NOISE (FLOAT)

Process noise for IMU accelerometer bias prediction

0.0 > 0.01 3.0e-3 m/s**3
EKF2_ACC_NOISE (FLOAT)

Accelerometer noise for covariance prediction

0.01 > 1.0 3.5e-1 m/s/s
EKF2_AID_MASK (INT32)

Integer bitmask controlling data fusion and aiding methods

Comment: Set bits in the following positions to enable: 0 : Set to true to use GPS data if available 1 : Set to true to use optical flow data if available 2 : Set to true to inhibit IMU bias estimation 3 : Set to true to enable vision position fusion 4 : Set to true to enable vision yaw fusion 5 : Set to true to enable multi-rotor drag specific force fusion 6 : set to true if the EV observations are in a non NED reference frame and need to be rotated before being used

Bitmask:
  • 0: use GPS
  • 1: use optical flow
  • 2: inhibit IMU bias estimation
  • 3: vision position fusion
  • 4: vision yaw fusion
  • 5: multi-rotor drag fusion
  • 6: rotate external vision

Reboot required: true

0 > 127 1
EKF2_ANGERR_INIT (FLOAT)

1-sigma tilt angle uncertainty after gravity vector alignment

Reboot required: true

0.0 > 0.5 0.1 rad
EKF2_ARSP_THR (FLOAT)

Airspeed fusion threshold. A value of zero will deactivate airspeed fusion. Any other positive value will determine the minimum airspeed which will still be fused. Set to about 90% of the vehicles stall speed. Both airspeed fusion and sideslip fusion must be active for the EKF to continue navigating after loss of GPS. Use EKF2_FUSE_BETA to activate sideslip fusion

0.0 > ? 0.0 m/s
EKF2_ASPD_MAX (FLOAT)

Upper limit on airspeed along individual axes used to correct baro for position error effects

5.0 > 50.0 20.0 m/s
EKF2_ASP_DELAY (FLOAT)

Airspeed measurement delay relative to IMU measurements

Reboot required: true

0 > 300 100 ms
EKF2_AVEL_DELAY (FLOAT)

Auxillary Velocity Estimate (e.g from a landing target) delay relative to IMU measurements

Reboot required: true

0 > 300 5 ms
EKF2_BARO_DELAY (FLOAT)

Barometer measurement delay relative to IMU measurements

Reboot required: true

0 > 300 0 ms
EKF2_BARO_GATE (FLOAT)

Gate size for barometric and GPS height fusion

Comment: Sets the number of standard deviations used by the innovation consistency test.

1.0 > ? 5.0 SD
EKF2_BARO_NOISE (FLOAT)

Measurement noise for barometric altitude

0.01 > 15.0 2.0 m
EKF2_BCOEF_X (FLOAT)

X-axis ballistic coefficient used by the multi-rotor specific drag force model. This should be adjusted to minimise variance of the X-axis drag specific force innovation sequence

1.0 > 100.0 25.0 kg/m**2
EKF2_BCOEF_Y (FLOAT)

Y-axis ballistic coefficient used by the multi-rotor specific drag force model. This should be adjusted to minimise variance of the Y-axis drag specific force innovation sequence

1.0 > 100.0 25.0 kg/m**2
EKF2_BETA_GATE (FLOAT)

Gate size for synthetic sideslip fusion

Comment: Sets the number of standard deviations used by the innovation consistency test.

1.0 > ? 5.0 SD
EKF2_BETA_NOISE (FLOAT)

Noise for synthetic sideslip fusion

0.1 > 1.0 0.3 m/s
EKF2_DECL_TYPE (INT32)

Integer bitmask controlling handling of magnetic declination

Comment: Set bits in the following positions to enable functions. 0 : Set to true to use the declination from the geo_lookup library when the GPS position becomes available, set to false to always use the EKF2_MAG_DECL value. 1 : Set to true to save the EKF2_MAG_DECL parameter to the value returned by the EKF when the vehicle disarms. 2 : Set to true to always use the declination as an observation when 3-axis magnetometer fusion is being used.

Bitmask:
  • 0: use geo_lookup declination
  • 1: save EKF2_MAG_DECL on disarm
  • 2: use declination as an observation

Reboot required: true

0 > 7 7
EKF2_DRAG_NOISE (FLOAT)

Specific drag force observation noise variance used by the multi-rotor specific drag force model. Increasing it makes the multi-rotor wind estimates adjust more slowly

0.5 > 10.0 2.5 (m/sec**2)**2
EKF2_EAS_NOISE (FLOAT)

Measurement noise for airspeed fusion

0.5 > 5.0 1.4 m/s
EKF2_EVA_NOISE (FLOAT)

Measurement noise for vision angle observations used when the vision system does not supply error estimates

0.01 > ? 0.05 rad
EKF2_EVP_NOISE (FLOAT)

Measurement noise for vision position observations used when the vision system does not supply error estimates

0.01 > ? 0.05 m
EKF2_EV_DELAY (FLOAT)

Vision Position Estimator delay relative to IMU measurements

Reboot required: true

0 > 300 175 ms
EKF2_EV_GATE (FLOAT)

Gate size for vision estimate fusion

Comment: Sets the number of standard deviations used by the innovation consistency test.

1.0 > ? 5.0 SD
EKF2_EV_POS_X (FLOAT)

X position of VI sensor focal point in body frame

0.0 m
EKF2_EV_POS_Y (FLOAT)

Y position of VI sensor focal point in body frame

0.0 m
EKF2_EV_POS_Z (FLOAT)

Z position of VI sensor focal point in body frame

0.0 m
EKF2_FUSE_BETA (INT32)

Boolean determining if synthetic sideslip measurements should fused

Comment: A value of 1 indicates that fusion is active Both sideslip fusion and airspeed fusion must be active for the EKF to continue navigating after loss of GPS. Use EKF2_ARSP_THR to activate airspeed fusion.

0
EKF2_GBIAS_INIT (FLOAT)

1-sigma IMU gyro switch-on bias

Reboot required: true

0.0 > 0.2 0.1 rad/sec
EKF2_GPS_CHECK (INT32)

Integer bitmask controlling GPS checks

Comment: Set bits to 1 to enable checks. Checks enabled by the following bit positions 0 : Minimum required sat count set by EKF2_REQ_NSATS 1 : Minimum required GDoP set by EKF2_REQ_GDOP 2 : Maximum allowed horizontal position error set by EKF2_REQ_EPH 3 : Maximum allowed vertical position error set by EKF2_REQ_EPV 4 : Maximum allowed speed error set by EKF2_REQ_SACC 5 : Maximum allowed horizontal position rate set by EKF2_REQ_HDRIFT. This check can only be used if the vehicle is stationary during alignment. 6 : Maximum allowed vertical position rate set by EKF2_REQ_VDRIFT. This check can only be used if the vehicle is stationary during alignment. 7 : Maximum allowed horizontal speed set by EKF2_REQ_HDRIFT. This check can only be used if the vehicle is stationary during alignment. 8 : Maximum allowed vertical velocity discrepancy set by EKF2_REQ_VDRIFT

Bitmask:
  • 0: Min sat count (EKF2_REQ_NSATS)
  • 1: Min GDoP (EKF2_REQ_GDOP)
  • 2: Max horizontal position error (EKF2_REQ_EPH)
  • 3: Max vertical position error (EKF2_REQ_EPV)
  • 4: Max speed error (EKF2_REQ_SACC)
  • 5: Max horizontal position rate (EKF2_REQ_HDRIFT)
  • 6: Max vertical position rate (EKF2_REQ_VDRIFT)
  • 7: Max horizontal speed (EKF2_REQ_HDRIFT)
  • 8: Max vertical velocity discrepancy (EKF2_REQ_VDRIFT)
0 > 511 21
EKF2_GPS_DELAY (FLOAT)

GPS measurement delay relative to IMU measurements

Reboot required: true

0 > 300 110 ms
EKF2_GPS_POS_X (FLOAT)

X position of GPS antenna in body frame

0.0 m
EKF2_GPS_POS_Y (FLOAT)

Y position of GPS antenna in body frame

0.0 m
EKF2_GPS_POS_Z (FLOAT)

Z position of GPS antenna in body frame

0.0 m
EKF2_GPS_P_GATE (FLOAT)

Gate size for GPS horizontal position fusion

Comment: Sets the number of standard deviations used by the innovation consistency test.

1.0 > ? 5.0 SD
EKF2_GPS_P_NOISE (FLOAT)

Measurement noise for gps position

0.01 > 10.0 0.5 m
EKF2_GPS_V_GATE (FLOAT)

Gate size for GPS velocity fusion

Comment: Sets the number of standard deviations used by the innovation consistency test.

1.0 > ? 5.0 SD
EKF2_GPS_V_NOISE (FLOAT)

Measurement noise for gps horizontal velocity

0.01 > 5.0 0.5 m/s
EKF2_GYR_B_NOISE (FLOAT)

Process noise for IMU rate gyro bias prediction

0.0 > 0.01 1.0e-3 rad/s**2
EKF2_GYR_NOISE (FLOAT)

Rate gyro noise for covariance prediction

0.0001 > 0.1 1.5e-2 rad/s
EKF2_HDG_GATE (FLOAT)

Gate size for magnetic heading fusion

Comment: Sets the number of standard deviations used by the innovation consistency test.

1.0 > ? 2.6 SD
EKF2_HEAD_NOISE (FLOAT)

Measurement noise for magnetic heading fusion

0.01 > 1.0 0.3 rad
EKF2_HGT_MODE (INT32)

Determines the primary source of height data used by the EKF

Comment: The range sensor option should only be used when for operation over a flat surface as the local NED origin will move up and down with ground level.

Values:
  • 0: Barometric pressure
  • 1: GPS
  • 2: Range sensor
  • 3: Vision

Reboot required: true

0
EKF2_IMU_POS_X (FLOAT)

X position of IMU in body frame

0.0 m
EKF2_IMU_POS_Y (FLOAT)

Y position of IMU in body frame

0.0 m
EKF2_IMU_POS_Z (FLOAT)

Z position of IMU in body frame

0.0 m
EKF2_MAGBIAS_ID (INT32)

ID of Magnetometer the learned bias is for

Reboot required: true

0
EKF2_MAGBIAS_X (FLOAT)

Learned value of magnetometer X axis bias. This is the amount of X-axis magnetometer bias learned by the EKF and saved from the last flight. It must be set to zero if the ground based magnetometer calibration is repeated

Reboot required: true

-0.5 > 0.5 0.0 mGauss
EKF2_MAGBIAS_Y (FLOAT)

Learned value of magnetometer Y axis bias. This is the amount of Y-axis magnetometer bias learned by the EKF and saved from the last flight. It must be set to zero if the ground based magnetometer calibration is repeated

Reboot required: true

-0.5 > 0.5 0.0 mGauss
EKF2_MAGBIAS_Z (FLOAT)

Learned value of magnetometer Z axis bias. This is the amount of Z-axis magnetometer bias learned by the EKF and saved from the last flight. It must be set to zero if the ground based magnetometer calibration is repeated

Reboot required: true

-0.5 > 0.5 0.0 mGauss
EKF2_MAGB_K (FLOAT)

Maximum fraction of learned mag bias saved at each disarm. Smaller values make the saved mag bias learn slower from flight to flight. Larger values make it learn faster. Must be > 0.0 and <= 1.0<="" p="">

0.0 > 1.0 0.2
EKF2_MAGB_VREF (FLOAT)

State variance assumed for magnetometer bias storage. This is a reference variance used to calculate the fraction of learned magnetometer bias that will be used to update the stored value. Smaller values will make the stored bias data adjust more slowly from flight to flight. Larger values will make it adjust faster

Reboot required: true

2.5E-7 mGauss**2
EKF2_MAG_ACCLIM (FLOAT)

Horizontal acceleration threshold used by automatic selection of magnetometer fusion method. This parameter is used when the magnetometer fusion method is set automatically (EKF2_MAG_TYPE = 0). If the filtered horizontal acceleration is greater than this parameter value, then the EKF will use 3-axis magnetomer fusion

0.0 > 5.0 0.5 m/s**2
EKF2_MAG_B_NOISE (FLOAT)

Process noise for body magnetic field prediction

0.0 > 0.1 1.0e-4 Gauss/s
EKF2_MAG_DECL (FLOAT)

Magnetic declination

0 deg
EKF2_MAG_DELAY (FLOAT)

Magnetometer measurement delay relative to IMU measurements

Reboot required: true

0 > 300 0 ms
EKF2_MAG_E_NOISE (FLOAT)

Process noise for earth magnetic field prediction

0.0 > 0.1 1.0e-3 Gauss/s
EKF2_MAG_GATE (FLOAT)

Gate size for magnetometer XYZ component fusion

Comment: Sets the number of standard deviations used by the innovation consistency test.

1.0 > ? 3.0 SD
EKF2_MAG_NOISE (FLOAT)

Measurement noise for magnetometer 3-axis fusion

0.001 > 1.0 5.0e-2 Gauss
EKF2_MAG_TYPE (INT32)

Type of magnetometer fusion

Comment: Integer controlling the type of magnetometer fusion used - magnetic heading or 3-component vector. The fuson of magnetomer data as a three component vector enables vehicle body fixed hard iron errors to be learned, but requires a stable earth field. If set to 'Automatic' magnetic heading fusion is used when on-ground and 3-axis magnetic field fusion in-flight with fallback to magnetic heading fusion if there is insufficient motion to make yaw or magnetic field states observable. If set to 'Magnetic heading' magnetic heading fusion is used at all times If set to '3-axis' 3-axis field fusion is used at all times. If set to 'VTOL custom' the behaviour is the same as 'Automatic', but if fusing airspeed, magnetometer fusion is only allowed to modify the magnetic field states. This can be used by VTOL platforms with large magnetic field disturbances to prevent incorrect bias states being learned during forward flight operation which can adversely affect estimation accuracy after transition to hovering flight. If set to 'MC custom' the behaviour is the same as 'Automatic, but if there are no earth frame position or velocity observations being used, the magnetometer will not be used. This enables vehicles to operate with no GPS in environments where the magnetic field cannot be used to provide a heading reference.

Values:
  • 0: Automatic
  • 1: Magnetic heading
  • 2: 3-axis
  • 3: VTOL customn
  • 4: MC custom

Reboot required: true

0
EKF2_MAG_YAWLIM (FLOAT)

Yaw rate threshold used by automatic selection of magnetometer fusion method. This parameter is used when the magnetometer fusion method is set automatically (EKF2_MAG_TYPE = 0). If the filtered yaw rate is greater than this parameter value, then the EKF will use 3-axis magnetomer fusion

0.0 > 0.5 0.25 rad/s
EKF2_MIN_OBS_DT (INT32)

Minimum time of arrival delta between non-IMU observations before data is downsampled. Baro and Magnetometer data will be averaged before downsampling, other data will be point sampled resulting in loss of information

Reboot required: true

10 > 50 20 ms
EKF2_MIN_RNG (FLOAT)

Minimum valid range for the range finder

0.01 > ? 0.1 m
EKF2_NOAID_NOISE (FLOAT)

Measurement noise for non-aiding position hold

0.5 > 50.0 10.0 m
EKF2_NOAID_TOUT (INT32)

Maximum lapsed time from last fusion of measurements that constrain velocity drift before the EKF will report the horizontal nav solution as invalid

500000 > 10000000 5000000 uSec
EKF2_OF_DELAY (FLOAT)

Optical flow measurement delay relative to IMU measurements Assumes measurement is timestamped at trailing edge of integration period

Reboot required: true

0 > 300 5 ms
EKF2_OF_GATE (FLOAT)

Gate size for optical flow fusion

Comment: Sets the number of standard deviations used by the innovation consistency test.

1.0 > ? 3.0 SD
EKF2_OF_N_MAX (FLOAT)

Measurement noise for the optical flow sensor

Comment: (when it's reported quality metric is at the minimum set by EKF2_OF_QMIN). The following condition must be met: EKF2_OF_N_MAXN >= EKF2_OF_N_MIN

0.05 > ? 0.5 rad/s
EKF2_OF_N_MIN (FLOAT)

Measurement noise for the optical flow sensor when it's reported quality metric is at the maximum

0.05 > ? 0.15 rad/s
EKF2_OF_POS_X (FLOAT)

X position of optical flow focal point in body frame

0.0 m
EKF2_OF_POS_Y (FLOAT)

Y position of optical flow focal point in body frame

0.0 m
EKF2_OF_POS_Z (FLOAT)

Z position of optical flow focal point in body frame

0.0 m
EKF2_OF_QMIN (INT32)

Optical Flow data will only be used if the sensor reports a quality metric >= EKF2_OF_QMIN

0 > 255 1
EKF2_PCOEF_XN (FLOAT)

Static pressure position error coefficient for the negative X axis. This is the ratio of static pressure error to dynamic pressure generated by a negative wind relative velocity along the X body axis. If the baro height estimate rises during backwards flight, then this will be a negative number

-0.5 > 0.5 0.0
EKF2_PCOEF_XP (FLOAT)

Static pressure position error coefficient for the positive X axis This is the ratio of static pressure error to dynamic pressure generated by a positive wind relative velocity along the X body axis. If the baro height estimate rises during forward flight, then this will be a negative number

-0.5 > 0.5 0.0
EKF2_PCOEF_Y (FLOAT)

Pressure position error coefficient for the Y axis. This is the ratio of static pressure error to dynamic pressure generated by a wind relative velocity along the Y body axis. If the baro height estimate rises during sideways flight, then this will be a negative number

-0.5 > 0.5 0.0
EKF2_PCOEF_Z (FLOAT)

Static pressure position error coefficient for the Z axis. This is the ratio of static pressure error to dynamic pressure generated by a wind relative velocity along the Z body axis

-0.5 > 0.5 0.0
EKF2_REQ_EPH (FLOAT)

Required EPH to use GPS

2 > 100 5.0 m
EKF2_REQ_EPV (FLOAT)

Required EPV to use GPS

2 > 100 8.0 m
EKF2_REQ_GDOP (FLOAT)

Required GDoP to use GPS

1.5 > 5.0 2.5
EKF2_REQ_HDRIFT (FLOAT)

Maximum horizontal drift speed to use GPS

0.1 > 1.0 0.3 m/s
EKF2_REQ_NSATS (INT32)

Required satellite count to use GPS

4 > 12 6
EKF2_REQ_SACC (FLOAT)

Required speed accuracy to use GPS

0.5 > 5.0 1.0 m/s
EKF2_REQ_VDRIFT (FLOAT)

Maximum vertical drift speed to use GPS

0.1 > 1.5 0.5 m/s
EKF2_RNG_AID (INT32)

Range sensor aid

Comment: If this parameter is enabled then the estimator will make use of the range finder measurements to estimate it's height even if range sensor is not the primary height source. It will only do so if conditions for range measurement fusion are met. This enables the range finder to be used during low speed and low altitude operation. Speed and height criteria are controlled by EKF2_RNG_A_VMAX and EKF2_RNG_A_HMAX. It should not be used for terrain following. It is intended to be used where a vertical takeoff and landing is performed, and horizontal flight does not occur until above EKF2_RNG_A_HMAX. If vehicle motion causes repeated switvhing between the rimary height sensor and range finder, an offset in the local position origin can accumulate. For terrain following, it is recommended to use the MPC_ALT_MODE parameter instead.

Values:
  • 0: Range aid disabled
  • 1: Range aid enabled
0
EKF2_RNG_A_HMAX (FLOAT)

Maximum absolute altitude (height above ground level) allowed for range aid mode

Comment: If the vehicle absolute altitude exceeds this value then the estimator will not fuse range measurements to estimate it's height. This only applies when range aid mode is activated (EKF2_RNG_AID = enabled).

1.0 > 10.0 5.0
EKF2_RNG_A_IGATE (FLOAT)

Gate size used for innovation consistency checks for range aid fusion

Comment: A lower value means HAGL needs to be more stable in order to use range finder for height estimation in range aid mode

0.1 > 5.0 1.0 SD
EKF2_RNG_A_VMAX (FLOAT)

Maximum horizontal velocity allowed for range aid mode

Comment: If the vehicle horizontal speed exceeds this value then the estimator will not fuse range measurements to estimate it's height. This only applies when range aid mode is activated (EKF2_RNG_AID = enabled).

0.1 > 2 1.0
EKF2_RNG_DELAY (FLOAT)

Range finder measurement delay relative to IMU measurements

Reboot required: true

0 > 300 5 ms
EKF2_RNG_GATE (FLOAT)

Gate size for range finder fusion

Comment: Sets the number of standard deviations used by the innovation consistency test.

1.0 > ? 5.0 SD
EKF2_RNG_NOISE (FLOAT)

Measurement noise for range finder fusion

0.01 > ? 0.1 m
EKF2_RNG_PITCH (FLOAT)

Range sensor pitch offset

-0.75 > 0.75 0.0 rad
EKF2_RNG_POS_X (FLOAT)

X position of range finder origin in body frame

0.0 m
EKF2_RNG_POS_Y (FLOAT)

Y position of range finder origin in body frame

0.0 m
EKF2_RNG_POS_Z (FLOAT)

Z position of range finder origin in body frame

0.0 m
EKF2_RNG_SFE (FLOAT)

Range finder range dependant noise scaler

Comment: Specifies the increase in range finder noise with range.

0.0 > 0.2 0.05 m/m
EKF2_TAS_GATE (FLOAT)

Gate size for TAS fusion

Comment: Sets the number of standard deviations used by the innovation consistency test.

1.0 > ? 3.0 SD
EKF2_TAU_POS (FLOAT)

Time constant of the position output prediction and smoothing filter. Controls how tightly the output track the EKF states

0.1 > 1.0 0.25 s
EKF2_TAU_VEL (FLOAT)

Time constant of the velocity output prediction and smoothing filter

? > 1.0 0.25 s
EKF2_TERR_GRAD (FLOAT)

Magnitude of terrain gradient

0.0 > ? 0.5 m/m
EKF2_TERR_NOISE (FLOAT)

Terrain altitude process noise - accounts for instability in vehicle height estimate

0.5 > ? 5.0 m/s
EKF2_WIND_NOISE (FLOAT)

Process noise for wind velocity prediction

0.0 > 1.0 1.0e-1 m/s/s

FW Attitude Control

The module where these parameters are defined is: modules/fw_att_control.

NameDescriptionMin > Max (Incr.)DefaultUnits
FW_ACRO_X_MAX (FLOAT)

Acro body x max rate

Comment: This is the rate the controller is trying to achieve if the user applies full roll stick input in acro mode.

45 > 720 90 degrees
FW_ACRO_Y_MAX (FLOAT)

Acro body y max rate

Comment: This is the body y rate the controller is trying to achieve if the user applies full pitch stick input in acro mode.

45 > 720 90 degrees
FW_ACRO_Z_MAX (FLOAT)

Acro body z max rate

Comment: This is the body z rate the controller is trying to achieve if the user applies full yaw stick input in acro mode.

10 > 180 45 degrees
FW_ARSP_MODE (INT32)

Airspeed mode

Comment: For small wings or VTOL without airspeed sensor this parameter can be used to enable flying without an airspeed reading

Values:
  • 0: Normal (use airspeed if available)
  • 1: Airspeed disabled
0
FW_BAT_SCALE_EN (INT32)

Whether to scale throttle by battery power level

Comment: This compensates for voltage drop of the battery over time by attempting to normalize performance across the operating range of the battery. The fixed wing should constantly behave as if it was fully charged with reduced max thrust at lower battery percentages. i.e. if cruise speed is at 0.5 throttle at 100% battery, it will still be 0.5 at 60% battery.

0
FW_DTRIM_P_FLPS (FLOAT)

Pitch trim increment for flaps configuration

Comment: This increment is added to the pitch trim whenever flaps are fully deployed.

-0.25 > 0.25 (0.01) 0.0
FW_DTRIM_P_VMAX (FLOAT)

Pitch trim increment at maximum airspeed

Comment: This increment is added to TRIM_PITCH when airspeed is FW_AIRSP_MAX.

-0.25 > 0.25 (0.01) 0.0
FW_DTRIM_P_VMIN (FLOAT)

Pitch trim increment at minimum airspeed

Comment: This increment is added to TRIM_PITCH when airspeed is FW_AIRSPD_MIN.

-0.25 > 0.25 (0.01) 0.0
FW_DTRIM_R_FLPS (FLOAT)

Roll trim increment for flaps configuration

Comment: This increment is added to TRIM_ROLL whenever flaps are fully deployed.

-0.25 > 0.25 (0.01) 0.0
FW_DTRIM_R_VMAX (FLOAT)

Roll trim increment at maximum airspeed

Comment: This increment is added to TRIM_ROLL when airspeed is FW_AIRSP_MAX.

-0.25 > 0.25 (0.01) 0.0
FW_DTRIM_R_VMIN (FLOAT)

Roll trim increment at minimum airspeed

Comment: This increment is added to TRIM_ROLL when airspeed is FW_AIRSPD_MIN.

-0.25 > 0.25 (0.01) 0.0
FW_DTRIM_Y_VMAX (FLOAT)

Yaw trim increment at maximum airspeed

Comment: This increment is added to TRIM_YAW when airspeed is FW_AIRSP_MAX.

-0.25 > 0.25 (0.01) 0.0
FW_DTRIM_Y_VMIN (FLOAT)

Yaw trim increment at minimum airspeed

Comment: This increment is added to TRIM_YAW when airspeed is FW_AIRSPD_MIN.

-0.25 > 0.25 (0.01) 0.0
FW_FLAPERON_SCL (FLOAT)

Scale factor for flaperons

0.0 > 1.0 (0.01) 0.0 norm
FW_FLAPS_SCL (FLOAT)

Scale factor for flaps

0.0 > 1.0 (0.01) 1.0 norm
FW_MAN_P_MAX (FLOAT)

Max manual pitch

Comment: Max pitch for manual control in attitude stabilized mode

0.0 > 90.0 (0.5) 45.0 deg
FW_MAN_P_SC (FLOAT)

Manual pitch scale

Comment: Scale factor applied to the desired pitch actuator command in full manual mode. This parameter allows to adjust the throws of the control surfaces.

0.0 > ? (0.01) 1.0 norm
FW_MAN_R_MAX (FLOAT)

Max manual roll

Comment: Max roll for manual control in attitude stabilized mode

0.0 > 90.0 (0.5) 45.0 deg
FW_MAN_R_SC (FLOAT)

Manual roll scale

Comment: Scale factor applied to the desired roll actuator command in full manual mode. This parameter allows to adjust the throws of the control surfaces.

0.0 > 1.0 (0.01) 1.0 norm
FW_MAN_Y_SC (FLOAT)

Manual yaw scale

Comment: Scale factor applied to the desired yaw actuator command in full manual mode. This parameter allows to adjust the throws of the control surfaces.

0.0 > ? (0.01) 1.0 norm
FW_PR_FF (FLOAT)

Pitch rate feed forward

Comment: Direct feed forward from rate setpoint to control surface output

0.0 > 10.0 (0.05) 0.5 %/rad/s
FW_PR_I (FLOAT)

Pitch rate integrator gain

Comment: This gain defines how much control response will result out of a steady state error. It trims any constant error.

0.005 > 0.5 (0.005) 0.02 %/rad
FW_PR_IMAX (FLOAT)

Pitch rate integrator limit

Comment: The portion of the integrator part in the control surface deflection is limited to this value

0.0 > 1.0 (0.05) 0.4
FW_PR_P (FLOAT)

Pitch rate proportional gain

Comment: This defines how much the elevator input will be commanded depending on the current body angular rate error.

0.005 > 1.0 (0.005) 0.08 %/rad/s
FW_PSP_OFF (FLOAT)

Pitch setpoint offset

Comment: An airframe specific offset of the pitch setpoint in degrees, the value is added to the pitch setpoint and should correspond to the typical cruise speed of the airframe.

-90.0 > 90.0 (0.5) 0.0 deg
FW_P_RMAX_NEG (FLOAT)

Maximum negative / down pitch rate

Comment: This limits the maximum pitch down up angular rate the controller will output (in degrees per second).

0.0 > 90.0 (0.5) 60.0 deg/s
FW_P_RMAX_POS (FLOAT)

Maximum positive / up pitch rate

Comment: This limits the maximum pitch up angular rate the controller will output (in degrees per second).

0.0 > 90.0 (0.5) 60.0 deg/s
FW_P_TC (FLOAT)

Attitude pitch time constant

Comment: This defines the latency between a pitch step input and the achieved setpoint (inverse to a P gain). Half a second is a good start value and fits for most average systems. Smaller systems may require smaller values, but as this will wear out servos faster, the value should only be decreased as needed.

0.2 > 1.0 (0.05) 0.4 s
FW_RATT_TH (FLOAT)

Threshold for Rattitude mode

Comment: Manual input needed in order to override attitude control rate setpoints and instead pass manual stick inputs as rate setpoints

0.0 > 1.0 (0.01) 0.8
FW_RLL_TO_YAW_FF (FLOAT)

Roll control to yaw control feedforward gain

Comment: This gain can be used to counteract the "adverse yaw" effect for fixed wings. When the plane enters a roll it will tend to yaw the nose out of the turn. This gain enables the use of a yaw actuator (rudder, airbrakes, ...) to counteract this effect.

0.0 > ? (0.01) 0.0
FW_RR_FF (FLOAT)

Roll rate feed forward

Comment: Direct feed forward from rate setpoint to control surface output. Use this to obtain a tigher response of the controller without introducing noise amplification.

0.0 > 10.0 (0.05) 0.5 %/rad/s
FW_RR_I (FLOAT)

Roll rate integrator Gain

Comment: This gain defines how much control response will result out of a steady state error. It trims any constant error.

0.005 > 0.2 (0.005) 0.01 %/rad
FW_RR_IMAX (FLOAT)

Roll integrator anti-windup

Comment: The portion of the integrator part in the control surface deflection is limited to this value.

0.0 > 1.0 (0.05) 0.2
FW_RR_P (FLOAT)

Roll rate proportional Gain

Comment: This defines how much the aileron input will be commanded depending on the current body angular rate error.

0.005 > 1.0 (0.005) 0.05 %/rad/s
FW_RSP_OFF (FLOAT)

Roll setpoint offset

Comment: An airframe specific offset of the roll setpoint in degrees, the value is added to the roll setpoint and should correspond to the typical cruise speed of the airframe.

-90.0 > 90.0 (0.5) 0.0 deg
FW_R_RMAX (FLOAT)

Maximum roll rate

Comment: This limits the maximum roll rate the controller will output (in degrees per second).

0.0 > 90.0 (0.5) 70.0 deg/s
FW_R_TC (FLOAT)

Attitude Roll Time Constant

Comment: This defines the latency between a roll step input and the achieved setpoint (inverse to a P gain). Half a second is a good start value and fits for most average systems. Smaller systems may require smaller values, but as this will wear out servos faster, the value should only be decreased as needed.

0.4 > 1.0 (0.05) 0.4 s
FW_WR_FF (FLOAT)

Wheel steering rate feed forward

Comment: Direct feed forward from rate setpoint to control surface output

0.0 > 10.0 (0.05) 0.2 %/rad/s
FW_WR_I (FLOAT)

Wheel steering rate integrator gain

Comment: This gain defines how much control response will result out of a steady state error. It trims any constant error.

0.005 > 0.5 (0.005) 0.1 %/rad
FW_WR_IMAX (FLOAT)

Wheel steering rate integrator limit

Comment: The portion of the integrator part in the control surface deflection is limited to this value

0.0 > 1.0 (0.05) 1.0
FW_WR_P (FLOAT)

Wheel steering rate proportional gain

Comment: This defines how much the wheel steering input will be commanded depending on the current body angular rate error.

0.005 > 1.0 (0.005) 0.5 %/rad/s
FW_W_EN (INT32)

Enable wheel steering controller

0
FW_W_RMAX (FLOAT)

Maximum wheel steering rate

Comment: This limits the maximum wheel steering rate the controller will output (in degrees per second).

0.0 > 90.0 (0.5) 30.0 deg/s
FW_YR_FF (FLOAT)

Yaw rate feed forward

Comment: Direct feed forward from rate setpoint to control surface output

0.0 > 10.0 (0.05) 0.3 %/rad/s
FW_YR_I (FLOAT)

Yaw rate integrator gain

Comment: This gain defines how much control response will result out of a steady state error. It trims any constant error.

0.0 > 50.0 (0.5) 0.01 %/rad
FW_YR_IMAX (FLOAT)

Yaw rate integrator limit

Comment: The portion of the integrator part in the control surface deflection is limited to this value

0.0 > 1.0 (0.05) 0.2
FW_YR_P (FLOAT)

Yaw rate proportional gain

Comment: This defines how much the rudder input will be commanded depending on the current body angular rate error.

0.005 > 1.0 (0.005) 0.05 %/rad/s
FW_Y_RMAX (FLOAT)

Maximum yaw rate

Comment: This limits the maximum yaw rate the controller will output (in degrees per second).

0.0 > 90.0 (0.5) 50.0 deg/s

FW L1 Control

The module where these parameters are defined is: modules/fw_pos_control_l1.

NameDescriptionMin > Max (Incr.)DefaultUnits
FW_CLMBOUT_DIFF (FLOAT)

Climbout Altitude difference

Comment: If the altitude error exceeds this parameter, the system will climb out with maximum throttle and minimum airspeed until it is closer than this distance to the desired altitude. Mostly used for takeoff waypoints / modes. Set to 0 to disable climbout mode (not recommended).

0.0 > 150.0 (0.5) 10.0 m
FW_L1_DAMPING (FLOAT)

L1 damping

Comment: Damping factor for L1 control.

0.6 > 0.9 (0.05) 0.75
FW_L1_PERIOD (FLOAT)

L1 period

Comment: This is the L1 distance and defines the tracking point ahead of the aircraft its following. A value of 18-25 meters works for most aircraft. Shorten slowly during tuning until response is sharp without oscillation.

12.0 > 50.0 (0.5) 20.0 m
FW_LND_AIRSPD_SC (FLOAT)

Min. airspeed scaling factor for landing

Comment: Multiplying this factor with the minimum airspeed of the plane gives the target airspeed the landing approach. FW_AIRSPD_MIN * FW_LND_AIRSPD_SC

1.0 > 1.5 (0.01) 1.3 norm
FW_LND_ANG (FLOAT)

Landing slope angle

1.0 > 15.0 (0.5) 5.0 deg
FW_LND_FLALT (FLOAT)

Landing flare altitude (relative to landing altitude)

0.0 > 25.0 (0.5) 3.0 m
FW_LND_FL_PMAX (FLOAT)

Flare, maximum pitch

Comment: Maximum pitch during flare, a positive sign means nose up Applied once FW_LND_TLALT is reached

0 > 45.0 (0.5) 15.0 deg
FW_LND_FL_PMIN (FLOAT)

Flare, minimum pitch

Comment: Minimum pitch during flare, a positive sign means nose up Applied once FW_LND_TLALT is reached

0 > 15.0 (0.5) 2.5 deg
FW_LND_HHDIST (FLOAT)

Landing heading hold horizontal distance. Set to 0 to disable heading hold

0 > 30.0 (0.5) 15.0 m
FW_LND_HVIRT (FLOAT)

1.0 > 15.0 (0.5) 10.0 m
FW_LND_TLALT (FLOAT)

Landing throttle limit altitude (relative landing altitude)

Comment: Default of -1.0 lets the system default to applying throttle limiting at 2/3 of the flare altitude.

-1.0 > 30.0 (0.5) -1.0 m
FW_LND_USETER (INT32)

Use terrain estimate during landing

0
FW_P_LIM_MAX (FLOAT)

Positive pitch limit

Comment: The maximum positive pitch the controller will output.

0.0 > 60.0 (0.5) 45.0 deg
FW_P_LIM_MIN (FLOAT)

Negative pitch limit

Comment: The minimum negative pitch the controller will output.

-60.0 > 0.0 (0.5) -45.0 deg
FW_R_LIM (FLOAT)

Controller roll limit

Comment: The maximum roll the controller will output.

35.0 > 65.0 (0.5) 50.0 deg
FW_THR_ALT_SCL (FLOAT)

Scale throttle by pressure change

Comment: Automatically adjust throttle to account for decreased air density at higher altitudes. Start with a scale factor of 1.0 and adjust for different propulsion systems. When flying without airspeed sensor this will help to keep a constant performance over large altitude ranges. The default value of 0 will disable scaling.

0.0 > 10.0 (0.1) 0.0
FW_THR_CRUISE (FLOAT)

Cruise throttle

Comment: This is the throttle setting required to achieve the desired cruise speed. Most airframes have a value of 0.5-0.7.

0.0 > 1.0 (0.01) 0.6 norm
FW_THR_IDLE (FLOAT)

Idle throttle

Comment: This is the minimum throttle while on the ground For aircraft with internal combustion engine this parameter should be set above desired idle rpm.

0.0 > 0.4 (0.01) 0.15 norm
FW_THR_LND_MAX (FLOAT)

Throttle limit value before flare

Comment: This throttle value will be set as throttle limit at FW_LND_TLALT, before aircraft will flare.

0.0 > 1.0 (0.01) 1.0 norm
FW_THR_MAX (FLOAT)

Throttle limit max

Comment: This is the maximum throttle % that can be used by the controller. For overpowered aircraft, this should be reduced to a value that provides sufficient thrust to climb at the maximum pitch angle PTCH_MAX.

0.0 > 1.0 (0.01) 1.0 norm
FW_THR_MIN (FLOAT)

Throttle limit min

Comment: This is the minimum throttle % that can be used by the controller. For electric aircraft this will normally be set to zero, but can be set to a small non-zero value if a folding prop is fitted to prevent the prop from folding and unfolding repeatedly in-flight or to provide some aerodynamic drag from a turning prop to improve the descent rate. For aircraft with internal combustion engine this parameter should be set for desired idle rpm.

0.0 > 1.0 (0.01) 0.0 norm
FW_THR_SLEW_MAX (FLOAT)

Throttle max slew rate

Comment: Maximum slew rate for the commanded throttle

0.0 > 1.0 0.0

FW Launch detection

The module where these parameters are defined is: modules/fw_pos_control_l1/launchdetection.

NameDescriptionMin > Max (Incr.)DefaultUnits
LAUN_ALL_ON (INT32)

Launch detection

0
LAUN_CAT_A (FLOAT)

Catapult accelerometer threshold

Comment: LAUN_CAT_A for LAUN_CAT_T serves as threshold to trigger launch detection.

0 > ? (0.5) 30.0 m/s/s
LAUN_CAT_MDEL (FLOAT)

Motor delay

Comment: Delay between starting attitude control and powering up the throttle (giving throttle control to the controller) Before this timespan is up the throttle will be set to FW_THR_IDLE, set to 0 to deactivate

0.0 > 10.0 (0.5) 0.0 s
LAUN_CAT_PMAX (FLOAT)

Maximum pitch before the throttle is powered up (during motor delay phase)

Comment: This is an extra limit for the maximum pitch which is imposed in the phase before the throttle turns on. This allows to limit the maximum pitch angle during a bungee launch (make the launch less steep).

0.0 > 45.0 (0.5) 30.0 deg
LAUN_CAT_T (FLOAT)

Catapult time threshold

Comment: LAUN_CAT_A for LAUN_CAT_T serves as threshold to trigger launch detection.

0.0 > 5.0 (0.05) 0.05 s

FW TECS

NameDescriptionMin > Max (Incr.)DefaultUnits
FW_AIRSPD_MAX (FLOAT)

Maximum Airspeed

Comment: If the airspeed is above this value, the TECS controller will try to decrease airspeed more aggressively.

Module: modules/fw_pos_control_l1

0.0 > 40 (0.5) 20.0 m/s
FW_AIRSPD_MIN (FLOAT)

Minimum Airspeed

Comment: If the airspeed falls below this value, the TECS controller will try to increase airspeed more aggressively.

Module: modules/fw_pos_control_l1

0.0 > 40 (0.5) 10.0 m/s
FW_AIRSPD_TRIM (FLOAT)

Cruise Airspeed

Comment: The fixed wing controller tries to fly at this airspeed.

Module: modules/fw_pos_control_l1

0.0 > 40 (0.5) 15.0 m/s
FW_T_CLMB_MAX (FLOAT)

Maximum climb rate

Comment: This is the best climb rate that the aircraft can achieve with the throttle set to THR_MAX and the airspeed set to the default value. For electric aircraft make sure this number can be achieved towards the end of flight when the battery voltage has reduced. The setting of this parameter can be checked by commanding a positive altitude change of 100m in loiter, RTL or guided mode. If the throttle required to climb is close to THR_MAX and the aircraft is maintaining airspeed, then this parameter is set correctly. If the airspeed starts to reduce, then the parameter is set to high, and if the throttle demand required to climb and maintain speed is noticeably less than FW_THR_MAX, then either FW_T_CLMB_MAX should be increased or FW_THR_MAX reduced.

Module: modules/fw_pos_control_l1

1.0 > 15.0 (0.5) 5.0 m/s
FW_T_HGT_OMEGA (FLOAT)

Complementary filter "omega" parameter for height

Comment: This is the cross-over frequency (in radians/second) of the complementary filter used to fuse vertical acceleration and barometric height to obtain an estimate of height rate and height. Increasing this frequency weights the solution more towards use of the barometer, whilst reducing it weights the solution more towards use of the accelerometer data.

Module: modules/fw_pos_control_l1

1.0 > 10.0 (0.5) 3.0 rad/s
FW_T_HRATE_FF (FLOAT)

Height rate feed forward

Module: modules/fw_pos_control_l1

0.0 > 1.0 (0.05) 0.8
FW_T_HRATE_P (FLOAT)

Height rate proportional factor

Module: modules/fw_pos_control_l1

0.0 > 1.0 (0.05) 0.05
FW_T_INTEG_GAIN (FLOAT)

Integrator gain

Comment: This is the integrator gain on the control loop. Increasing this gain increases the speed at which speed and height offsets are trimmed out, but reduces damping and increases overshoot. Set this value to zero to completely disable all integrator action.

Module: modules/fw_pos_control_l1

0.0 > 2.0 (0.05) 0.1
FW_T_PTCH_DAMP (FLOAT)

Pitch damping factor

Comment: This is the damping gain for the pitch demand loop. Increase to add damping to correct for oscillations in height. The default value of 0.0 will work well provided the pitch to servo controller has been tuned properly.

Module: modules/fw_pos_control_l1

0.0 > 2.0 (0.1) 0.0
FW_T_RLL2THR (FLOAT)

Roll -> Throttle feedforward

Comment: Increasing this gain turn increases the amount of throttle that will be used to compensate for the additional drag created by turning. Ideally this should be set to approximately 10 x the extra sink rate in m/s created by a 45 degree bank turn. Increase this gain if the aircraft initially loses energy in turns and reduce if the aircraft initially gains energy in turns. Efficient high aspect-ratio aircraft (eg powered sailplanes) can use a lower value, whereas inefficient low aspect-ratio models (eg delta wings) can use a higher value.

Module: modules/fw_pos_control_l1

0.0 > 20.0 (0.5) 15.0
FW_T_SINK_MAX (FLOAT)

Maximum descent rate

Comment: This sets the maximum descent rate that the controller will use. If this value is too large, the aircraft can over-speed on descent. This should be set to a value that can be achieved without exceeding the lower pitch angle limit and without over-speeding the aircraft.

Module: modules/fw_pos_control_l1

1.0 > 15.0 (0.5) 5.0 m/s
FW_T_SINK_MIN (FLOAT)

Minimum descent rate

Comment: This is the sink rate of the aircraft with the throttle set to THR_MIN and flown at the same airspeed as used to measure FW_T_CLMB_MAX.

Module: modules/fw_pos_control_l1

1.0 > 5.0 (0.5) 2.0 m/s
FW_T_SPDWEIGHT (FLOAT)

Speed <--> Altitude priority

Comment: This parameter adjusts the amount of weighting that the pitch control applies to speed vs height errors. Setting it to 0.0 will cause the pitch control to control height and ignore speed errors. This will normally improve height accuracy but give larger airspeed errors. Setting it to 2.0 will cause the pitch control loop to control speed and ignore height errors. This will normally reduce airspeed errors, but give larger height errors. The default value of 1.0 allows the pitch control to simultaneously control height and speed. Note to Glider Pilots - set this parameter to 2.0 (The glider will adjust its pitch angle to maintain airspeed, ignoring changes in height).

Module: modules/fw_pos_control_l1

0.0 > 2.0 (1.0) 1.0
FW_T_SPD_OMEGA (FLOAT)

Complementary filter "omega" parameter for speed

Comment: This is the cross-over frequency (in radians/second) of the complementary filter used to fuse longitudinal acceleration and airspeed to obtain an improved airspeed estimate. Increasing this frequency weights the solution more towards use of the airspeed sensor, whilst reducing it weights the solution more towards use of the accelerometer data.

Module: modules/fw_pos_control_l1

1.0 > 10.0 (0.5) 2.0 rad/s
FW_T_SRATE_P (FLOAT)

Speed rate P factor

Module: modules/fw_pos_control_l1

0.0 > 2.0 (0.01) 0.02
FW_T_THRO_CONST (FLOAT)

TECS Throttle time constant

Comment: This is the time constant of the TECS throttle control algorithm (in seconds). Smaller values make it faster to respond, larger values make it slower to respond.

Module: modules/fw_pos_control_l1

1.0 > 10.0 (0.5) 8.0 s
FW_T_THR_DAMP (FLOAT)

Throttle damping factor

Comment: This is the damping gain for the throttle demand loop. Increase to add damping to correct for oscillations in speed and height.

Module: modules/fw_pos_control_l1

0.0 > 2.0 (0.1) 0.5
FW_T_TIME_CONST (FLOAT)

TECS time constant

Comment: This is the time constant of the TECS control algorithm (in seconds). Smaller values make it faster to respond, larger values make it slower to respond.

Module: modules/fw_pos_control_l1

1.0 > 10.0 (0.5) 5.0 s
FW_T_VERT_ACC (FLOAT)

Maximum vertical acceleration

Comment: This is the maximum vertical acceleration (in m/s/s) either up or down that the controller will use to correct speed or height errors. The default value of 7 m/s/s (equivalent to +- 0.7 g) allows for reasonably aggressive pitch changes if required to recover from under-speed conditions.

Module: modules/fw_pos_control_l1

1.0 > 10.0 (0.5) 7.0 m/s/s
GND_SPEED_MAX (FLOAT)

Maximum ground speed

Module: modules/gnd_pos_control

0.0 > 40 (0.5) 10.0 m/s
GND_SPEED_TRIM (FLOAT)

Trim ground speed

Module: modules/gnd_pos_control

0.0 > 40 (0.5) 3.0 m/s

Follow target

The module where these parameters are defined is: modules/navigator.

NameDescriptionMin > Max (Incr.)DefaultUnits
NAV_FT_DST (FLOAT)

Distance to follow target from

Comment: The distance in meters to follow the target at

1.0 > ? 8.0 meters
NAV_FT_FS (INT32)

Side to follow target from

Comment: The side to follow the target from (front right = 0, behind = 1, front = 2, front left = 3)

0 > 3 1 n/a
NAV_FT_RS (FLOAT)

Dynamic filtering algorithm responsiveness to target movement lower numbers increase the responsiveness to changing long lat but also ignore less noise

0.0 > 1.0 0.5 n/a
NAV_MIN_FT_HT (FLOAT)

Minimum follow target altitude

Comment: The minimum height in meters relative to home for following a target

8.0 > ? 8.0 meters

GND Attitude Control

NameDescriptionMin > Max (Incr.)DefaultUnits
GND_BAT_SCALE_EN (INT32)

Whether to scale throttle by battery power level

Comment: This compensates for voltage drop of the battery over time by attempting to normalize performance across the operating range of the battery. The fixed wing should constantly behave as if it was fully charged with reduced max thrust at lower battery percentages. i.e. if cruise speed is at 0.5 throttle at 100% battery, it will still be 0.5 at 60% battery.

Module: modules/gnd_att_control

0
GND_GSPD_SP_TRIM (FLOAT)

Groundspeed speed trim

Comment: This allows to scale the turning radius depending on the speed.

Module: modules/gnd_att_control

0.0 > ? (0.1) 1.0 norm
GND_MAN_Y_SC (FLOAT)

Manual yaw scale

Comment: Scale factor applied to the desired yaw actuator command in full manual mode. This parameter allows to adjust the throws of the control surfaces.

Module: modules/gnd_att_control

0.0 > ? (0.01) 1.0 norm
GND_SPEED_D (FLOAT)

Speed proportional gain

Comment: This is the derivative gain for the speed closed loop controller

Module: modules/gnd_pos_control

0.00 > 50.0 (0.005) 0.0 %m/s
GND_SPEED_I (FLOAT)

Speed Integral gain

Comment: This is the integral gain for the speed closed loop controller

Module: modules/gnd_pos_control

0.00 > 50.0 (0.005) 0.1 %m/s
GND_SPEED_IMAX (FLOAT)

Speed integral maximum value

Comment: This is the maxim value the integral can reach to prevent wind-up.

Module: modules/gnd_pos_control

0.005 > 50.0 (0.005) 1.0 %m/s
GND_SPEED_P (FLOAT)

Speed proportional gain

Comment: This is the proportional gain for the speed closed loop controller

Module: modules/gnd_pos_control

0.005 > 50.0 (0.005) 2.0 %m/s
GND_SPEED_THR_SC (FLOAT)

Speed to throttle scaler

Comment: This is a gain to map the speed control output to the throttle linearly.

Module: modules/gnd_pos_control

0.005 > 50.0 (0.005) 1.0 %m/s
GND_SP_CTRL_MODE (INT32)

Control mode for speed

Comment: This allows the user to choose between closed loop gps speed or open loop cruise throttle speed

Values:
  • 0: open loop control
  • 1: close the loop with gps speed

Module: modules/gnd_pos_control

0 > 1 1
GND_WR_D (FLOAT)

Wheel steering rate integrator gain

Module: modules/gnd_att_control

0.00 > 30 (0.005) 0.00 %/rad
GND_WR_FF (FLOAT)

Wheel steering rate feed forward

Comment: Direct feed forward from rate setpoint to control surface output

Module: modules/gnd_att_control

0.0 > 10.0 (0.05) 0.0 %/rad/s
GND_WR_I (FLOAT)

Wheel steering rate integrator gain

Comment: This gain defines how much control response will result out of a steady state error. It trims any constant error.

Module: modules/gnd_att_control

0.00 > 0.5 (0.005) 0.00 %/rad
GND_WR_IMAX (FLOAT)

Wheel steering rate integrator limit

Comment: The portion of the integrator part in the control surface deflection is limited to this value

Module: modules/gnd_att_control

0.0 > 1.0 (0.05) 0.0
GND_WR_P (FLOAT)

Wheel steering rate proportional gain

Comment: This defines how much the wheel steering input will be commanded depending on the current body angular rate error.

Module: modules/gnd_att_control

0.005 > 1.0 (0.005) 1.0 %/rad/s
GND_WR_TC (FLOAT)

Attitude Wheel Time Constant

Comment: This defines the latency between a steering step input and the achieved setpoint (inverse to a P gain). Half a second is a good start value and fits for most average systems. Smaller systems may require smaller values, but as this will wear out servos faster, the value should only be decreased as needed.

Module: modules/gnd_att_control

0.4 > 1.0 (0.05) 0.4 s
GND_W_RMAX (FLOAT)

Maximum wheel steering rate

Comment: This limits the maximum wheel steering rate the controller will output (in degrees per second). Setting a value of zero disables the limit.

Module: modules/gnd_att_control

0.0 > 90.0 (0.5) 90.0 deg/s

GND POS Control

The module where these parameters are defined is: modules/gnd_pos_control.

NameDescriptionMin > Max (Incr.)DefaultUnits
GND_L1_DAMPING (FLOAT)

L1 damping

Comment: Damping factor for L1 control.

0.6 > 0.9 (0.05) 0.75
GND_L1_DIST (FLOAT)

L1 distance

Comment: This is the waypoint radius

0.0 > 100.0 (0.1) 5.0 m
GND_L1_PERIOD (FLOAT)

L1 period

Comment: This is the L1 distance and defines the tracking point ahead of the rover it's following. Using values around 2-5 for a traxxas stampede. Shorten slowly during tuning until response is sharp without oscillation.

0.0 > 50.0 (0.5) 10.0 m
GND_THR_CRUISE (FLOAT)

Cruise throttle

Comment: This is the throttle setting required to achieve the desired cruise speed. 10% is ok for a traxxas stampede vxl with ESC set to training mode

0.0 > 1.0 (0.01) 0.1 norm
GND_THR_IDLE (FLOAT)

Idle throttle

Comment: This is the minimum throttle while on the ground, it should be 0 for a rover

0.0 > 0.4 (0.01) 0.0 norm
GND_THR_MAX (FLOAT)

Throttle limit max

Comment: This is the maximum throttle % that can be used by the controller. For a Traxxas stampede vxl with the ESC set to training, 30 % is enough

0.0 > 1.0 (0.01) 0.3 norm
GND_THR_MIN (FLOAT)

Throttle limit min

Comment: This is the minimum throttle % that can be used by the controller. Set to 0 for rover

0.0 > 1.0 (0.01) 0.0 norm

GPS

The module where these parameters are defined is: drivers/gps.

NameDescriptionMin > Max (Incr.)DefaultUnits
GPS_DUMP_COMM (INT32)

Dump GPS communication to a file

Comment: If this is set to 1, all GPS communication data will be published via uORB, and written to the log file as gps_dump message.

Values:
  • 0: Disable
  • 1: Enable
0 > 1 0
GPS_UBX_DYNMODEL (INT32)

u-blox GPS dynamic platform model

Comment: u-blox receivers support different dynamic platform models to adjust the navigation engine to the expected application environment.

Values:
  • 2: stationary
  • 4: automotive
  • 6: airborne with <1g acceleration<="" li="">
  • 7: airborne with <2g acceleration<="" li="">
  • 8: airborne with <4g acceleration<="" li="">

Reboot required: true

0 > 9 7

GPS Failure Navigation

The module where these parameters are defined is: modules/navigator.

NameDescriptionMin > Max (Incr.)DefaultUnits
NAV_GPSF_LT (FLOAT)

Loiter time

Comment: The time in seconds the system should do open loop loiter and wait for GPS recovery before it goes into flight termination. Set to 0 to disable.

0.0 > 3600.0 (1) 0.0 s
NAV_GPSF_P (FLOAT)

Fixed pitch angle

Comment: Pitch in degrees during the open loop loiter

-30.0 > 30.0 (0.5) 0.0 deg
NAV_GPSF_R (FLOAT)

Fixed bank angle

Comment: Roll in degrees during the loiter

0.0 > 30.0 (0.5) 15.0 deg
NAV_GPSF_TR (FLOAT)

Thrust

Comment: Thrust value which is set during the open loop loiter

0.0 > 1.0 (0.05) 0.0 norm

Geofence

The module where these parameters are defined is: modules/navigator.

NameDescriptionMin > Max (Incr.)DefaultUnits
GF_ACTION (INT32)

Geofence violation action

Comment: Note: Setting this value to 4 enables flight termination, which will kill the vehicle on violation of the fence. Due to the inherent danger of this, this function is disabled using a software circuit breaker, which needs to be reset to 0 to really shut down the system.

Values:
  • 0: None
  • 1: Warning
  • 2: Hold mode
  • 3: Return mode
  • 4: Terminate
0 > 4 1
GF_ALTMODE (INT32)

Geofence altitude mode

Comment: Select which altitude reference should be used 0 = WGS84, 1 = AMSL

Values:
  • 0: WGS84
  • 1: AMSL
0 > 1 0
GF_COUNT (INT32)

Geofence counter limit

Comment: Set how many subsequent position measurements outside of the fence are needed before geofence violation is triggered

-1 > 10 (1) -1
GF_MAX_HOR_DIST (FLOAT)

Max horizontal distance in meters

Comment: Maximum horizontal distance in meters the vehicle can be from home before triggering a geofence action. Disabled if 0.

0 > 10000 (1) 0 m
GF_MAX_VER_DIST (FLOAT)

Max vertical distance in meters

Comment: Maximum vertical distance in meters the vehicle can be from home before triggering a geofence action. Disabled if 0.

0 > 10000 (1) 0 m
GF_SOURCE (INT32)

Geofence source

Comment: Select which position source should be used. Selecting GPS instead of global position makes sure that there is no dependence on the position estimator 0 = global position, 1 = GPS

Values:
  • 0: GPOS
  • 1: GPS
0 > 1 0

Iridium SBD

The module where these parameters are defined is: drivers/telemetry/iridiumsbd.

NameDescriptionMin > Max (Incr.)DefaultUnits
ISBD_READ_INT (INT32)

Satellite radio read interval. Only required to be nonzero if data is not sent using a ring call

0 > 5000 0 s
ISBD_SBD_TIMEOUT (INT32)

Iridium SBD session timeout

0 > 300 60 s
ISBD_STACK_TIME (INT32)

Time [ms] the Iridium driver will wait for additional mavlink messages to combine them into one SBD message Value 0 turns the functionality off

0 > 500 0 ms

Land Detector

The module where these parameters are defined is: modules/land_detector.

NameDescriptionMin > Max (Incr.)DefaultUnits
LNDFW_AIRSPD_MAX (FLOAT)

Airspeed max

Comment: Maximum airspeed allowed in the landed state (m/s)

4 > 20 8.00 m/s
LNDFW_VEL_XY_MAX (FLOAT)

Fixedwing max horizontal velocity

Comment: Maximum horizontal velocity allowed in the landed state (m/s)

0.5 > 10 5.0 m/s
LNDFW_VEL_Z_MAX (FLOAT)

Fixedwing max climb rate

Comment: Maximum vertical velocity allowed in the landed state (m/s up and down)

0.1 > 20 3.0 m/s
LNDFW_XYACC_MAX (FLOAT)

Fixedwing max horizontal acceleration

Comment: Maximum horizontal (x,y body axes) acceleration allowed in the landed state (m/s^2)

2 > 15 8.0 m/s^2
LNDMC_ALT_MAX (FLOAT)

Maximum altitude for multicopters

Comment: The system will obey this limit as a hard altitude limit. This setting will be consolidated with the GF_MAX_VER_DIST parameter. A negative value indicates no altitude limitation.

-1 > 10000 -1.0 m
LNDMC_FFALL_THR (FLOAT)

Multicopter specific force threshold

Comment: Multicopter threshold on the specific force measured by accelerometers in m/s^2 for free-fall detection

0.1 > 10 2.0 m/s^2
LNDMC_FFALL_TTRI (FLOAT)

Multicopter free-fall trigger time

Comment: Seconds (decimal) that freefall conditions have to met before triggering a freefall. Minimal value is limited by LAND_DETECTOR_UPDATE_RATE=50Hz in landDetector.h

0.02 > 5 0.3 s
LNDMC_ROT_MAX (FLOAT)

Multicopter max rotation

Comment: Maximum allowed angular velocity around each axis allowed in the landed state.

20.0 deg/s
LNDMC_THR_RANGE (FLOAT)

Multicopter sub-hover throttle scaling

Comment: The range between throttle_min and throttle_hover is scaled by this parameter to define how close to minimum throttle the current throttle value needs to be in order to get accepted as landed.

0.05 > 0.5 0.1
LNDMC_XY_VEL_MAX (FLOAT)

Multicopter max horizontal velocity

Comment: Maximum horizontal velocity allowed in the landed state (m/s)

1.5 m/s
LNDMC_Z_VEL_MAX (FLOAT)

Multicopter max climb rate

Comment: Maximum vertical velocity allowed in the landed state (m/s up and down)

0.50 m/s
LND_FLIGHT_T_HI (INT32)

Total flight time in microseconds

Comment: Total flight time of this autopilot. Higher 32 bits of the value. Flight time in microseconds = (LND_FLIGHT_T_HI << 32) | LND_FLIGHT_T_LO.

0 > ? 0
LND_FLIGHT_T_LO (INT32)

Total flight time in microseconds

Comment: Total flight time of this autopilot. Lower 32 bits of the value. Flight time in microseconds = (LND_FLIGHT_T_HI << 32) | LND_FLIGHT_T_LO.

0 > ? 0

Landing target Estimator

The module where these parameters are defined is: modules/landing_target_estimator.

NameDescriptionMin > Max (Incr.)DefaultUnits
LTEST_ACC_UNC (FLOAT)

Acceleration uncertainty

Comment: Variance of acceleration measurement used for landing target position prediction. Higher values results in tighter following of the measurements and more lenient outlier rejection

0.01 > ? 10.0 (m/s^2)^2
LTEST_MEAS_UNC (FLOAT)

Landing target measurement uncertainty

Comment: Variance of the landing target measurement from the driver. Higher values results in less agressive following of the measurement and a smoother output as well as fewer rejected measurements.

0.005 tan(rad)^2
LTEST_MODE (INT32)

Landing target mode

Comment: Configure the mode of the landing target. Depending on the mode, the landing target observations are used differently to aid position estimation. Mode Moving: The landing target may be moving around while in the field of view of the vehicle. Landing target measurements are not used to aid positioning. Mode Stationary: The landing target is stationary. Measured velocity w.r.t. the landing target is used to aid velocity estimation.

Values:
  • 0: Moving
  • 1: Stationary
0 > 1 0
LTEST_POS_UNC_IN (FLOAT)

Initial landing target position uncertainty

Comment: Initial variance of the relative landing target position in x and y direction

0.001 > ? 0.1 m^2
LTEST_SCALE_X (FLOAT)

Scale factor for sensor measurements in sensor x axis

Comment: Landing target x measurements are scaled by this factor before being used

0.01 > ? 1.0
LTEST_SCALE_Y (FLOAT)

Scale factor for sensor measurements in sensor y axis

Comment: Landing target y measurements are scaled by this factor before being used

0.01 > ? 1.0
LTEST_VEL_UNC_IN (FLOAT)

Initial landing target velocity uncertainty

Comment: Initial variance of the relative landing target velocity in x and y direction

0.001 > ? 0.1 (m/s)^2

Local Position Estimator

The module where these parameters are defined is: modules/local_position_estimator.

NameDescriptionMin > Max (Incr.)DefaultUnits
LPE_ACC_XY (FLOAT)

Accelerometer xy noise density

Comment: Data sheet noise density = 150ug/sqrt(Hz) = 0.0015 m/s^2/sqrt(Hz) Larger than data sheet to account for tilt error.

0.00001 > 2 0.012 m/s^2/sqrt(Hz)
LPE_ACC_Z (FLOAT)

Accelerometer z noise density

Comment: Data sheet noise density = 150ug/sqrt(Hz) = 0.0015 m/s^2/sqrt(Hz)

0.00001 > 2 0.02 m/s^2/sqrt(Hz)
LPE_BAR_Z (FLOAT)

Barometric presssure altitude z standard deviation

0.01 > 100 3.0 m
LPE_EPH_MAX (FLOAT)

Max EPH allowed for GPS initialization

1.0 > 5.0 3.0 m
LPE_EPV_MAX (FLOAT)

Max EPV allowed for GPS initialization

1.0 > 5.0 5.0 m
LPE_FAKE_ORIGIN (INT32)

Enable publishing of a fake global position (e.g for AUTO missions using Optical Flow) by initializing the estimator to the LPE_LAT/LON parameters when global information is unavailable

0 > 1 0
LPE_FGYRO_HP (FLOAT)

Flow gyro high pass filter cut off frequency

0 > 2 0.001 Hz
LPE_FLW_OFF_Z (FLOAT)

Optical flow z offset from center

-1 > 1 0.0 m
LPE_FLW_QMIN (INT32)

Optical flow minimum quality threshold

0 > 255 150
LPE_FLW_R (FLOAT)

Optical flow rotation (roll/pitch) noise gain

0.1 > 10.0 7.0 m/s / (rad)
LPE_FLW_RR (FLOAT)

Optical flow angular velocity noise gain

0.0 > 10.0 7.0 m/s / (rad/s)
LPE_FLW_SCALE (FLOAT)

Optical flow scale

0.1 > 10.0 1.3 m
LPE_FUSION (INT32)

Integer bitmask controlling data fusion

Comment: Set bits in the following positions to enable: 0 : Set to true to fuse GPS data if available, also requires GPS for altitude init 1 : Set to true to fuse optical flow data if available 2 : Set to true to fuse vision position 3 : Set to true to enable landing target 4 : Set to true to fuse land detector 5 : Set to true to publish AGL as local position down component 6 : Set to true to enable flow gyro compensation 7 : Set to true to enable baro fusion default (145 - GPS, baro, land detector)

Bitmask:
  • 0: fuse GPS, requires GPS for alt. init
  • 1: fuse optical flow
  • 2: fuse vision position
  • 3: fuse landing target
  • 4: fuse land detector
  • 5: pub agl as lpos down
  • 6: flow gyro compensation
  • 7: fuse baro
0 > 255 145
LPE_GPS_DELAY (FLOAT)

GPS delay compensaton

0 > 0.4 0.29 sec
LPE_GPS_VXY (FLOAT)

GPS xy velocity standard deviation. EPV used if greater than this value

0.01 > 2 0.25 m/s
LPE_GPS_VZ (FLOAT)

GPS z velocity standard deviation

0.01 > 2 0.25 m/s
LPE_GPS_XY (FLOAT)

Minimum GPS xy standard deviation, uses reported EPH if greater

0.01 > 5 1.0 m
LPE_GPS_Z (FLOAT)

Minimum GPS z standard deviation, uses reported EPV if greater

0.01 > 200 3.0 m
LPE_LAND_VXY (FLOAT)

Land detector xy velocity standard deviation

0.01 > 10.0 0.05 m/s
LPE_LAND_Z (FLOAT)

Land detector z standard deviation

0.001 > 10.0 0.03 m
LPE_LAT (FLOAT)

Local origin latitude for nav w/o GPS

-90 > 90 47.397742 deg
LPE_LDR_OFF_Z (FLOAT)

Lidar z offset from center of vehicle +down

-1 > 1 0.00 m
LPE_LDR_Z (FLOAT)

Lidar z standard deviation

0.01 > 1 0.03 m
LPE_LON (FLOAT)

Local origin longitude for nav w/o GPS

-180 > 180 8.545594 deg
LPE_LT_COV (FLOAT)

Minimum landing target standard covariance, uses reported covariance if greater

0.0 > 10 0.0001 m^2
LPE_PN_B (FLOAT)

Accel bias propagation noise density

0 > 1 1e-3 (m/s^2)/s/sqrt(Hz)
LPE_PN_P (FLOAT)

Position propagation noise density

Comment: Increase to trust measurements more. Decrease to trust model more.

0 > 1 0.1 m/s/sqrt(Hz)
LPE_PN_T (FLOAT)

Terrain random walk noise density, hilly/outdoor (0.1), flat/Indoor (0.001)

0 > 1 0.001 (m/s)/(sqrt(hz))
LPE_PN_V (FLOAT)

Velocity propagation noise density

Comment: Increase to trust measurements more. Decrease to trust model more.

0 > 1 0.1 (m/s)/s/sqrt(Hz)
LPE_SNR_OFF_Z (FLOAT)

Sonar z offset from center of vehicle +down

-1 > 1 0.00 m
LPE_SNR_Z (FLOAT)

Sonar z standard deviation

0.01 > 1 0.05 m
LPE_T_MAX_GRADE (FLOAT)

Terrain maximum percent grade, hilly/outdoor (100 = 45 deg), flat/Indoor (0 = 0 deg) Used to calculate increased terrain random walk nosie due to movement

0 > 100 1.0 %
LPE_VIC_P (FLOAT)

Vicon position standard deviation

0.0001 > 1 0.001 m
LPE_VIS_DELAY (FLOAT)

Vision delay compensaton

Comment: Set to zero to enable automatic compensation from measurement timestamps

0 > 0.1 0.1 sec
LPE_VIS_XY (FLOAT)

Vision xy standard deviation

0.01 > 1 0.1 m
LPE_VIS_Z (FLOAT)

Vision z standard deviation

0.01 > 100 0.5 m
LPE_VXY_PUB (FLOAT)

Required velocity xy standard deviation to publish position

0.01 > 1.0 0.3 m/s
LPE_X_LP (FLOAT)

Cut frequency for state publication

5 > 1000 5.0 Hz
LPE_Z_PUB (FLOAT)

Required z standard deviation to publish altitude/ terrain

0.3 > 5.0 1.0 m

The module where these parameters are defined is: modules/mavlink.

NameDescriptionMin > Max (Incr.)DefaultUnits
MAV_BROADCAST (INT32)

Broadcast heartbeats on local network

Comment: This allows a ground control station to automatically find the drone on the local network.

Values:
  • 0: Never broadcast
  • 1: Always broadcast
0
MAV_COMP_ID (INT32)

MAVLink component ID

Reboot required: true

1 > 250 1
MAV_FWDEXTSP (INT32)

Forward external setpoint messages

Comment: If set to 1 incoming external setpoint messages will be directly forwarded to the controllers if in offboard control mode

1
MAV_PROTO_VER (INT32)

MAVLink protocol version

Values:
  • 0: Default to 1, switch to 2 if GCS sends version 2
  • 1: Always use version 1
  • 2: Always use version 2
0
MAV_RADIO_ID (INT32)

MAVLink Radio ID

Comment: When non-zero the MAVLink app will attempt to configure the radio to this ID and re-set the parameter to 0. If the value is negative it will reset the complete radio config to factory defaults.

-1 > 240 0
MAV_SYS_ID (INT32)

MAVLink system ID

Reboot required: true

1 > 250 1
MAV_TYPE (INT32)

MAVLink airframe type

Values:
  • 0: Generic micro air vehicle
  • 1: Fixed wing aircraft
  • 2: Quadrotor
  • 3: Coaxial helicopter
  • 4: Normal helicopter with tail rotor
  • 5: Ground installation
  • 6: Operator control unit / ground control station
  • 7: Airship, controlled
  • 8: Free balloon, uncontrolled
  • 9: Rocket
  • 10: Ground rover
  • 11: Surface vessel, boat, ship
  • 12: Submarine
  • 13: Hexarotor
  • 14: Octorotor
  • 15: Tricopter
  • 16: Flapping wing
  • 17: Kite
  • 18: Onboard companion controller
  • 19: Two-rotor VTOL using control surfaces in vertical operation in addition. Tailsitter.
  • 20: Quad-rotor VTOL using a V-shaped quad config in vertical operation. Tailsitter.
  • 21: Tiltrotor VTOL
  • 22: VTOL reserved 2
  • 23: VTOL reserved 3
  • 24: VTOL reserved 4
  • 25: VTOL reserved 5
  • 26: Onboard gimbal
  • 27: Onboard ADSB peripheral
1 > 27 2
MAV_USEHILGPS (INT32)

Use/Accept HIL GPS message even if not in HIL mode

Comment: If set to 1 incoming HIL GPS messages are parsed.

0

MKBLCTRL Testmode

The module where these parameters are defined is: drivers/mkblctrl.

NameDescriptionMin > Max (Incr.)DefaultUnits
MKBLCTRL_TEST (INT32)

Test mode (Identify) of MKBLCTRL Driver

0

MPU9x50 Configuration

The module where these parameters are defined is: platforms/qurt/fc_addon/mpu_spi.

NameDescriptionMin > Max (Incr.)DefaultUnits
MPU_ACC_LPF_ENM (INT32)

Low pass filter frequency for Accelerometer

Values:
  • 0: MPU9X50_ACC_LPF_460HZ
  • 1: MPU9X50_ACC_LPF_184HZ
  • 2: MPU9X50_ACC_LPF_92HZ
  • 3: MPU9X50_ACC_LPF_41HZ
  • 4: MPU9X50_ACC_LPF_20HZ
  • 5: MPU9X50_ACC_LPF_10HZ
  • 6: MPU9X50_ACC_LPF_5HZ
  • 7: MPU9X50_ACC_LPF_460HZ_NOLPF
4
MPU_GYRO_LPF_ENM (INT32)

Low pass filter frequency for Gyro

Values:
  • 0: MPU9X50_GYRO_LPF_250HZ
  • 1: MPU9X50_GYRO_LPF_184HZ
  • 2: MPU9X50_GYRO_LPF_92HZ
  • 3: MPU9X50_GYRO_LPF_41HZ
  • 4: MPU9X50_GYRO_LPF_20HZ
  • 5: MPU9X50_GYRO_LPF_10HZ
  • 6: MPU9X50_GYRO_LPF_5HZ
  • 7: MPU9X50_GYRO_LPF_3600HZ_NOLPF
4
MPU_SAMPLE_R_ENM (INT32)

Sample rate in Hz

Values:
  • 0: MPU9x50_SAMPLE_RATE_100HZ
  • 1: MPU9x50_SAMPLE_RATE_200HZ
  • 2: MPU9x50_SAMPLE_RATE_500HZ
  • 3: MPU9x50_SAMPLE_RATE_1000HZ
2

Mission

NameDescriptionMin > Max (Incr.)DefaultUnits
COM_OBL_ACT (INT32)

Set offboard loss failsafe mode

Comment: The offboard loss failsafe will only be entered after a timeout, set by COM_OF_LOSS_T in seconds.

Values:
  • 0: Land mode
  • 1: Hold mode
  • 2: Return mode

Module: modules/commander

0
COM_OBL_RC_ACT (INT32)

Set offboard loss failsafe mode when RC is available

Comment: The offboard loss failsafe will only be entered after a timeout, set by COM_OF_LOSS_T in seconds.

Values:
  • 0: Position mode
  • 1: Altitude mode
  • 2: Manual
  • 3: Return mode
  • 4: Land mode
  • 5: Hold mode

Module: modules/commander

0
COM_POSCTL_NAVL (INT32)

Position control navigation loss response

Comment: This sets the flight mode that will be used if navigation accuracy is no longer adequate for position control. Navigation accuracy checks can be disabled using the CBRK_VELPOSERR parameter, but doing so will remove protection for all flight modes.

Values:
  • 0: Assume use of remote control after fallback. Switch to Altitude mode if a height estimate is available, else switch to MANUAL.
  • 1: Assume no use of remote control after fallback. Switch to Land mode if a height estimate is available, else switch to TERMINATION.

Module: modules/commander

0
COM_TAKEOFF_ACT (INT32)

Action after TAKEOFF has been accepted

Comment: The mode transition after TAKEOFF has completed successfully.

Values:
  • 0: Hold
  • 1: Mission (if valid)

Module: modules/commander

0
MIS_ALTMODE (INT32)

Altitude setpoint mode

Comment: 0: the system will follow a zero order hold altitude setpoint 1: the system will follow a first order hold altitude setpoint values follow the definition in enum mission_altitude_mode

Values:
  • 0: Zero Order Hold
  • 1: First Order Hold

Module: modules/navigator

0 > 1 1
MIS_DIST_1WP (FLOAT)

Maximal horizontal distance from home to first waypoint

Comment: Failsafe check to prevent running mission stored from previous flight at a new takeoff location. Set a value of zero or less to disable. The mission will not be started if the current waypoint is more distant than MIS_DIS_1WP from the home position.

Module: modules/navigator

0 > 10000 (100) 900 m
MIS_DIST_WPS (FLOAT)

Maximal horizontal distance between waypoint

Comment: Failsafe check to prevent running missions which are way too big. Set a value of zero or less to disable. The mission will not be started if any distance between two subsequent waypoints is greater than MIS_DIST_WPS.

Module: modules/navigator

0 > 10000 (100) 900 m
MIS_LTRMIN_ALT (FLOAT)

Minimum Loiter altitude

Comment: This is the minimum altitude the system will always obey. The intent is to stay out of ground effect. set to -1, if there shouldn't be a minimum loiter altitude

Module: modules/navigator

-1 > 80 (0.5) -1.0 m
MIS_MNT_YAW_CTL (INT32)

Enable yaw control of the mount. (Only affects multicopters and ROI mission items)

Comment: If enabled, yaw commands will be sent to the mount and the vehicle will follow its heading mode as specified by MIS_YAWMODE. If disabled, the vehicle will yaw towards the ROI.

Values:
  • 0: Disable
  • 1: Enable

Module: modules/navigator

0 > 1 0
MIS_TAKEOFF_ALT (FLOAT)

Take-off altitude

Comment: This is the minimum altitude the system will take off to.

Module: modules/navigator

0 > 80 (0.5) 2.5 m
MIS_YAWMODE (INT32)

Multirotor only. Yaw setpoint mode

Comment: The values are defined in the enum mission_altitude_mode

Values:
  • 0: Heading as set by waypoint
  • 1: Heading towards waypoint
  • 2: Heading towards home
  • 3: Heading away from home

Module: modules/navigator

0 > 3 1
MIS_YAW_ERR (FLOAT)

Max yaw error in degrees needed for waypoint heading acceptance

Module: modules/navigator

0 > 90 (1) 12.0 deg
MIS_YAW_TMT (FLOAT)

Time in seconds we wait on reaching target heading at a waypoint if it is forced

Comment: If set > 0 it will ignore the target heading for normal waypoint acceptance. If the waypoint forces the heading the timeout will matter. For example on VTOL forwards transition. Mainly useful for VTOLs that have less yaw authority and might not reach target yaw in wind. Disabled by default.

Module: modules/navigator

-1 > 20 (1) -1.0 s
NAV_ACC_RAD (FLOAT)

Acceptance Radius

Comment: Default acceptance radius, overridden by acceptance radius of waypoint if set. For fixed wing the L1 turning distance is used for horizontal acceptance.

Module: modules/navigator

0.05 > 200.0 (0.5) 10.0 m
NAV_DLL_ACT (INT32)

Set data link loss failsafe mode

Comment: The data link loss failsafe will only be entered after a timeout, set by COM_DL_LOSS_T in seconds. Once the timeout occurs the selected action will be executed. Setting this parameter to 4 will enable CASA Outback Challenge rules, which are only recommended to participants of that competition.

Values:
  • 0: Disabled
  • 1: Hold mode
  • 2: Return mode
  • 3: Land mode
  • 4: Data Link Auto Recovery (CASA Outback Challenge rules)
  • 5: Terminate
  • 6: Lockdown

Module: modules/navigator

0
NAV_FORCE_VT (INT32)

Force VTOL mode takeoff and land

Module: modules/navigator

1
NAV_FW_ALT_RAD (FLOAT)

FW Altitude Acceptance Radius

Comment: Acceptance radius for fixedwing altitude.

Module: modules/navigator

0.05 > 200.0 (0.5) 10.0 m
NAV_LOITER_RAD (FLOAT)

Loiter radius (FW only)

Comment: Default value of loiter radius for missions, Hold mode, Return mode, etc. (fixedwing only).

Module: modules/navigator

25 > 1000 (0.5) 50.0 m
NAV_MC_ALT_RAD (FLOAT)

MC Altitude Acceptance Radius

Comment: Acceptance radius for multicopter altitude.

Module: modules/navigator

0.05 > 200.0 (0.5) 0.8 m
NAV_RCL_ACT (INT32)

Set RC loss failsafe mode

Comment: The RC loss failsafe will only be entered after a timeout, set by COM_RC_LOSS_T in seconds. If RC input checks have been disabled by setting the COM_RC_IN_MODE param it will not be triggered. Setting this parameter to 4 will enable CASA Outback Challenge rules, which are only recommended to participants of that competition.

Values:
  • 0: Disabled
  • 1: Hold mode
  • 2: Return mode
  • 3: Land mode
  • 4: RC Auto Recovery (CASA Outback Challenge rules)
  • 5: Terminate
  • 6: Lockdown

Module: modules/navigator

2
NAV_RCL_LT (FLOAT)

RC Loss Loiter Time (CASA Outback Challenge rules)

Comment: The amount of time in seconds the system should loiter at current position before termination. Only applies if NAV_RCL_ACT is set to 2 (CASA Outback Challenge rules). Set to -1 to make the system skip loitering.

Module: modules/navigator

-1.0 > ? (0.1) 120.0 s
NAV_TRAFF_AVOID (INT32)

Set traffic avoidance mode

Comment: Enabling this will allow the system to respond to transponder data from e.g. ADSB transponders

Values:
  • 0: Disabled
  • 1: Warn only
  • 2: Return mode
  • 3: Land mode

Module: modules/navigator

1
VT_WV_LND_EN (INT32)

Weather-vane mode landings for missions

Module: modules/vtol_att_control

0
VT_WV_LTR_EN (INT32)

Weather-vane mode for loiter

Module: modules/vtol_att_control

0
VT_WV_TKO_EN (INT32)

Enable weather-vane mode takeoff for missions

Module: modules/vtol_att_control

0

Mount

The module where these parameters are defined is: drivers/vmount.

NameDescriptionMin > Max (Incr.)DefaultUnits
MNT_DO_STAB (INT32)

Stabilize the mount (set to true for servo gimbal, false for passthrough). Does not affect MAVLINK_ROI input

0
MNT_MAN_PITCH (INT32)

Auxiliary channel to control pitch (in AUX input or manual mode)

Values:
  • 0: Disable
  • 1: AUX1
  • 2: AUX2
  • 3: AUX3
  • 4: AUX4
  • 5: AUX5
0 > 5 0
MNT_MAN_ROLL (INT32)

Auxiliary channel to control roll (in AUX input or manual mode)

Values:
  • 0: Disable
  • 1: AUX1
  • 2: AUX2
  • 3: AUX3
  • 4: AUX4
  • 5: AUX5
0 > 5 0
MNT_MAN_YAW (INT32)

Auxiliary channel to control yaw (in AUX input or manual mode)

Values:
  • 0: Disable
  • 1: AUX1
  • 2: AUX2
  • 3: AUX3
  • 4: AUX4
  • 5: AUX5
0 > 5 0
MNT_MAV_COMPID (INT32)

Mavlink Component ID of the mount

Comment: If MNT_MODE_OUT is MAVLINK, mount configure/control commands will be sent with this component ID.

154
MNT_MAV_SYSID (INT32)

Mavlink System ID of the mount

Comment: If MNT_MODE_OUT is MAVLINK, mount configure/control commands will be sent with this target ID.

1
MNT_MODE_IN (INT32)

Mount input mode

Comment: RC uses the AUX input channels (see MNT_MAN_* parameters), MAVLINK_ROI uses the MAV_CMD_DO_SET_ROI Mavlink message, and MAVLINK_DO_MOUNT the MAV_CMD_DO_MOUNT_CONFIGURE and MAV_CMD_DO_MOUNT_CONTROL messages to control a mount.

Values:
  • -1: DISABLED
  • 0: AUTO
  • 1: RC
  • 2: MAVLINK_ROI
  • 3: MAVLINK_DO_MOUNT

Reboot required: true

-1 > 3 -1
MNT_MODE_OUT (INT32)

Mount output mode

Comment: AUX uses the mixer output Control Group #2. MAVLINK uses the MAV_CMD_DO_MOUNT_CONFIGURE and MAV_CMD_DO_MOUNT_CONTROL MavLink messages to control a mount (set MNT_MAV_SYSID & MNT_MAV_COMPID)

Values:
  • 0: AUX
  • 1: MAVLINK
0 > 1 0
MNT_OB_LOCK_MODE (FLOAT)

Mixer value for selecting a locking mode if required for the gimbal (only in AUX output mode)

-1.0 > 1.0 0.0
MNT_OB_NORM_MODE (FLOAT)

Mixer value for selecting normal mode if required by the gimbal (only in AUX output mode)

-1.0 > 1.0 -1.0
MNT_OFF_PITCH (FLOAT)

Offset for pitch channel output in degrees

-360.0 > 360.0 0.0
MNT_OFF_ROLL (FLOAT)

Offset for roll channel output in degrees

-360.0 > 360.0 0.0
MNT_OFF_YAW (FLOAT)

Offset for yaw channel output in degrees

-360.0 > 360.0 0.0
MNT_RANGE_PITCH (FLOAT)

Range of pitch channel output in degrees (only in AUX output mode)

1.0 > 720.0 360.0
MNT_RANGE_ROLL (FLOAT)

Range of roll channel output in degrees (only in AUX output mode)

1.0 > 720.0 360.0
MNT_RANGE_YAW (FLOAT)

Range of yaw channel output in degrees (only in AUX output mode)

1.0 > 720.0 360.0

Multicopter Attitude Control

The module where these parameters are defined is: modules/mc_att_control.

NameDescriptionMin > Max (Incr.)DefaultUnits
MC_ACRO_EXPO (FLOAT)

Acro mode Expo factor for Roll and Pitch

Comment: Exponential factor for tuning the input curve shape. 0 Purely linear input curve 1 Purely cubic input curve

0 > 1 0.69
MC_ACRO_EXPO_Y (FLOAT)

Acro mode Expo factor for Yaw

Comment: Exponential factor for tuning the input curve shape. 0 Purely linear input curve 1 Purely cubic input curve

0 > 1 0.69
MC_ACRO_P_MAX (FLOAT)

Max acro pitch rate default: 2 turns per second

0.0 > 1800.0 (5) 720.0 deg/s
MC_ACRO_R_MAX (FLOAT)

Max acro roll rate default: 2 turns per second

0.0 > 1800.0 (5) 720.0 deg/s
MC_ACRO_SUPEXPO (FLOAT)

Acro mode SuperExpo factor for Roll and Pitch

Comment: SuperExpo factor for refining the input curve shape tuned using MC_ACRO_EXPO. 0 Pure Expo function 0.7 resonable shape enhancement for intuitive stick feel 0.95 very strong bent input curve only near maxima have effect

0 > 0.95 0.7
MC_ACRO_SUPEXPOY (FLOAT)

Acro mode SuperExpo factor for Yaw

Comment: SuperExpo factor for refining the input curve shape tuned using MC_ACRO_EXPO_Y. 0 Pure Expo function 0.7 resonable shape enhancement for intuitive stick feel 0.95 very strong bent input curve only near maxima have effect

0 > 0.95 0.7
MC_ACRO_Y_MAX (FLOAT)

Max acro yaw rate default 1.5 turns per second

0.0 > 1800.0 (5) 540.0 deg/s
MC_AIRMODE (INT32)

Multicopter air-mode

Comment: The air-mode enables the mixer to increase the total thrust of the multirotor in order to keep attitude and rate control even at low and high throttle. This function should be disabled during tuning as it will help the controller to diverge if the closed-loop is unstable.

0
MC_BAT_SCALE_EN (INT32)

Battery power level scaler

Comment: This compensates for voltage drop of the battery over time by attempting to normalize performance across the operating range of the battery. The copter should constantly behave as if it was fully charged with reduced max acceleration at lower battery percentages. i.e. if hover is at 0.5 throttle at 100% battery, it will still be 0.5 at 60% battery.

0
MC_DTERM_CUTOFF (FLOAT)

Cutoff frequency for the low pass filter on the D-term in the rate controller

Comment: The D-term uses the derivative of the rate and thus is the most susceptible to noise. Therefore, using a D-term filter allows to decrease the driver-level filtering, which leads to reduced control latency and permits to increase the P gains. A value of 0 disables the filter.

0 > 1000 (10) 30. Hz
MC_PITCHRATE_D (FLOAT)

Pitch rate D gain

Comment: Pitch rate differential gain. Small values help reduce fast oscillations. If value is too big oscillations will appear again.

0.0 > ? (0.0005) 0.003
MC_PITCHRATE_FF (FLOAT)

Pitch rate feedforward

Comment: Improves tracking performance.

0.0 > ? 0.0
MC_PITCHRATE_I (FLOAT)

Pitch rate I gain

Comment: Pitch rate integral gain. Can be set to compensate static thrust difference or gravity center offset.

0.0 > ? (0.01) 0.05
MC_PITCHRATE_MAX (FLOAT)

Max pitch rate

Comment: Limit for pitch rate in manual and auto modes (except acro). Has effect for large rotations in autonomous mode, to avoid large control output and mixer saturation. This is not only limited by the vehicle's properties, but also by the maximum measurement rate of the gyro.

0.0 > 1800.0 (5) 220.0 deg/s
MC_PITCHRATE_P (FLOAT)

Pitch rate P gain

Comment: Pitch rate proportional gain, i.e. control output for angular speed error 1 rad/s.

0.0 > 0.6 (0.01) 0.15
MC_PITCH_P (FLOAT)

Pitch P gain

Comment: Pitch proportional gain, i.e. desired angular speed in rad/s for error 1 rad.

0.0 > 12 (0.1) 6.5 1/s
MC_PR_INT_LIM (FLOAT)

Pitch rate integrator limit

Comment: Pitch rate integrator limit. Can be set to increase the amount of integrator available to counteract disturbances or reduced to improve settling time after large pitch moment trim changes.

0.0 > ? (0.01) 0.30
MC_RATT_TH (FLOAT)

Threshold for Rattitude mode

Comment: Manual input needed in order to override attitude control rate setpoints and instead pass manual stick inputs as rate setpoints

0.0 > 1.0 (0.01) 0.8
MC_ROLLRATE_D (FLOAT)

Roll rate D gain

Comment: Roll rate differential gain. Small values help reduce fast oscillations. If value is too big oscillations will appear again.

0.0 > 0.01 (0.0005) 0.003
MC_ROLLRATE_FF (FLOAT)

Roll rate feedforward

Comment: Improves tracking performance.

0.0 > ? 0.0
MC_ROLLRATE_I (FLOAT)

Roll rate I gain

Comment: Roll rate integral gain. Can be set to compensate static thrust difference or gravity center offset.

0.0 > ? (0.01) 0.05
MC_ROLLRATE_MAX (FLOAT)

Max roll rate

Comment: Limit for roll rate in manual and auto modes (except acro). Has effect for large rotations in autonomous mode, to avoid large control output and mixer saturation. This is not only limited by the vehicle's properties, but also by the maximum measurement rate of the gyro.

0.0 > 1800.0 (5) 220.0 deg/s
MC_ROLLRATE_P (FLOAT)

Roll rate P gain

Comment: Roll rate proportional gain, i.e. control output for angular speed error 1 rad/s.

0.0 > 0.5 (0.01) 0.15
MC_ROLL_P (FLOAT)

Roll P gain

Comment: Roll proportional gain, i.e. desired angular speed in rad/s for error 1 rad.

0.0 > 12 (0.1) 6.5 1/s
MC_RR_INT_LIM (FLOAT)

Roll rate integrator limit

Comment: Roll rate integrator limit. Can be set to increase the amount of integrator available to counteract disturbances or reduced to improve settling time after large roll moment trim changes.

0.0 > ? (0.01) 0.30
MC_TPA_BREAK_D (FLOAT)

TPA D Breakpoint

Comment: Throttle PID Attenuation (TPA) Magnitude of throttle setpoint at which to begin attenuating roll/pitch D gain

0.0 > 1.0 (0.1) 1.0
MC_TPA_BREAK_I (FLOAT)

TPA I Breakpoint

Comment: Throttle PID Attenuation (TPA) Magnitude of throttle setpoint at which to begin attenuating roll/pitch I gain

0.0 > 1.0 (0.1) 1.0
MC_TPA_BREAK_P (FLOAT)

TPA P Breakpoint

Comment: Throttle PID Attenuation (TPA) Magnitude of throttle setpoint at which to begin attenuating roll/pitch P gain

0.0 > 1.0 (0.1) 1.0
MC_TPA_RATE_D (FLOAT)

TPA Rate D

Comment: Throttle PID Attenuation (TPA) Rate at which to attenuate roll/pitch D gain Attenuation factor is 1.0 when throttle magnitude is below the setpoint Above the setpoint, the attenuation factor is (1 - rate * (throttle - breakpoint) / (1.0 - breakpoint))

0.0 > 1.0 (0.05) 0.0
MC_TPA_RATE_I (FLOAT)

TPA Rate I

Comment: Throttle PID Attenuation (TPA) Rate at which to attenuate roll/pitch I gain Attenuation factor is 1.0 when throttle magnitude is below the setpoint Above the setpoint, the attenuation factor is (1 - rate * (throttle - breakpoint) / (1.0 - breakpoint))

0.0 > 1.0 (0.05) 0.0
MC_TPA_RATE_P (FLOAT)

TPA Rate P

Comment: Throttle PID Attenuation (TPA) Rate at which to attenuate roll/pitch P gain Attenuation factor is 1.0 when throttle magnitude is below the setpoint Above the setpoint, the attenuation factor is (1 - rate * (throttle - breakpoint) / (1.0 - breakpoint))

0.0 > 1.0 (0.05) 0.0
MC_YAWRATE_D (FLOAT)

Yaw rate D gain

Comment: Yaw rate differential gain. Small values help reduce fast oscillations. If value is too big oscillations will appear again.

0.0 > ? (0.01) 0.0
MC_YAWRATE_FF (FLOAT)

Yaw rate feedforward

Comment: Improves tracking performance.

0.0 > ? (0.01) 0.0
MC_YAWRATE_I (FLOAT)

Yaw rate I gain

Comment: Yaw rate integral gain. Can be set to compensate static thrust difference or gravity center offset.

0.0 > ? (0.01) 0.1
MC_YAWRATE_MAX (FLOAT)

Max yaw rate

0.0 > 1800.0 (5) 200.0 deg/s
MC_YAWRATE_P (FLOAT)

Yaw rate P gain

Comment: Yaw rate proportional gain, i.e. control output for angular speed error 1 rad/s.

0.0 > 0.6 (0.01) 0.2
MC_YAWRAUTO_MAX (FLOAT)

Max yaw rate in auto mode

Comment: Limit for yaw rate, has effect for large rotations in autonomous mode, to avoid large control output and mixer saturation.

0.0 > 360.0 (5) 45.0 deg/s
MC_YAW_FF (FLOAT)

Yaw feed forward

Comment: Feed forward weight for manual yaw control. 0 will give slow responce and no overshot, 1 - fast responce and big overshot.

0.0 > 1.0 (0.01) 0.5
MC_YAW_P (FLOAT)

Yaw P gain

Comment: Yaw proportional gain, i.e. desired angular speed in rad/s for error 1 rad.

0.0 > 5 (0.1) 2.8 1/s
MC_YR_INT_LIM (FLOAT)

Yaw rate integrator limit

Comment: Yaw rate integrator limit. Can be set to increase the amount of integrator available to counteract disturbances or reduced to improve settling time after large yaw moment trim changes.

0.0 > ? (0.01) 0.30

Multicopter Position Control

The module where these parameters are defined is: modules/mc_pos_control.

NameDescriptionMin > Max (Incr.)DefaultUnits
MPC_ACC_DOWN_MAX (FLOAT)

Maximum vertical acceleration in velocity controlled modes down

2.0 > 15.0 (1) 10.0 m/s/s
MPC_ACC_HOR (FLOAT)

Acceleration for auto and for manual

2.0 > 15.0 (1) 5.0 m/s/s
MPC_ACC_HOR_ESTM (FLOAT)

Horizontal acceleration in manual modes when te estimator speed limit is removed. If full stick is being applied and the estimator stops demanding a speed limit, which it had been before (e.g if GPS is gained while flying on optical flow/vision only), the vehicle will accelerate at this rate until the normal position control speed is achieved

0.2 > 2.0 (0.1) 0.5 m/s/s
MPC_ACC_HOR_MAX (FLOAT)

Maximum horizontal acceleration for auto mode and maximum deceleration for manual mode

2.0 > 15.0 (1) 10.0 m/s/s
MPC_ACC_UP_MAX (FLOAT)

Maximum vertical acceleration in velocity controlled modes upward

2.0 > 15.0 (1) 10.0 m/s/s
MPC_ALT_MODE (INT32)

Altitude control mode

Comment: Set to 1 to control height above ground instead of height above origin. Note: If optical flow is being used as the only source of navigation then the height above ground will be selected automatically and maximum height will be limited to the value set by MPC_MAX_FLOW_HGT. Note: The height controller will revert to using height above origin if the distance to ground estimate becomes invalid as indicated by the local_position.distance_bottom_valid message being false.

Values:
  • 0: Altitude following
  • 1: Terrain following
0 > 1 0
MPC_CRUISE_90 (FLOAT)

Cruise speed when angle prev-current/current-next setpoint is 90 degrees. It should be lower than MPC_XY_CRUISE

Comment: Applies only in AUTO modes (includes also RTL / hold / etc.)

1.0 > 20.0 (1) 3.0 m/s
MPC_DEC_HOR_SLOW (FLOAT)

Slow horizontal manual deceleration for manual mode

0.5 > 10.0 (1) 5.0 m/s/s
MPC_FLT_TSK (INT32)

Flag to test flight tasks instead of legacy functionality Temporary Parameter during the transition to flight tasks

Values:
  • 0: Legacy Functionality
  • 1: Test flight tasks
0 > 1 0
MPC_HOLD_DZ (FLOAT)

Deadzone of sticks where position hold is enabled

0.0 > 1.0 0.1
MPC_HOLD_MAX_XY (FLOAT)

Maximum horizontal velocity for which position hold is enabled (use 0 to disable check)

0.0 > 3.0 0.8 m/s
MPC_HOLD_MAX_Z (FLOAT)

Maximum vertical velocity for which position hold is enabled (use 0 to disable check)

0.0 > 3.0 0.6 m/s
MPC_JERK_MAX (FLOAT)

Maximum jerk in manual controlled mode for BRAKING to zero. If this value is below MPC_JERK_MIN, the acceleration limit in xy and z is MPC_ACC_HOR_MAX and MPC_ACC_UP_MAX respectively instantaneously when the user demands brake (=zero stick input). Otherwise the acceleration limit increases from current acceleration limit towards MPC_ACC_HOR_MAX/MPC_ACC_UP_MAX with jerk limit

0.0 > 15.0 (1) 0.0 m/s/s/s
MPC_JERK_MIN (FLOAT)

Minimum jerk in manual controlled mode for BRAKING to zero

0.5 > 10.0 (1) 1.0 m/s/s/s
MPC_LAND_ALT1 (FLOAT)

Altitude for 1. step of slow landing (descend)

Comment: Below this altitude descending velocity gets limited to a value between "MPC_Z_VEL_MAX" and "MPC_LAND_SPEED" to enable a smooth descent experience Value needs to be higher than "MPC_LAND_ALT2"

0 > 122 10.0 m
MPC_LAND_ALT2 (FLOAT)

Altitude for 2. step of slow landing (landing)

Comment: Below this altitude descending velocity gets limited to "MPC_LAND_SPEED" Value needs to be lower than "MPC_LAND_ALT1"

0 > 122 5.0 m
MPC_LAND_SPEED (FLOAT)

Landing descend rate

0.6 > ? 0.7 m/s
MPC_MANTHR_MAX (FLOAT)

Maximum manual thrust

Comment: Limit max allowed thrust for Manual mode.

0.0 > 1.0 (0.01) 1.0 norm
MPC_MANTHR_MIN (FLOAT)

Minimum manual thrust

Comment: Minimum vertical thrust. It's recommended to set it > 0 to avoid free fall with zero thrust. With MC_AIRMODE set to 1, this can safely be set to 0.

0.0 > 1.0 (0.01) 0.08 norm
MPC_MAN_TILT_MAX (FLOAT)

Maximal tilt angle in manual or altitude mode

0.0 > 90.0 35.0 deg
MPC_MAN_Y_MAX (FLOAT)

Max manual yaw rate

0.0 > 400 200.0 deg/s
MPC_THR_HOVER (FLOAT)

Hover thrust

Comment: Vertical thrust required to hover. This value is mapped to center stick for manual throttle control. With this value set to the thrust required to hover, transition from manual to ALTCTL mode while hovering will occur with the throttle stick near center, which is then interpreted as (near) zero demand for vertical speed.

0.2 > 0.8 (0.01) 0.5 norm
MPC_THR_MAX (FLOAT)

Maximum thrust in auto thrust control

Comment: Limit max allowed thrust

0.0 > 1.0 (0.01) 1.0 norm
MPC_THR_MIN (FLOAT)

Minimum thrust in auto thrust control

Comment: It's recommended to set it > 0 to avoid free fall with zero thrust.

0.05 > 1.0 (0.01) 0.12 norm
MPC_TILTMAX_AIR (FLOAT)

Maximum tilt angle in air

Comment: Limits maximum tilt in AUTO and POSCTRL modes during flight.

0.0 > 90.0 45.0 deg
MPC_TILTMAX_LND (FLOAT)

Maximum tilt during landing

Comment: Limits maximum tilt angle on landing.

0.0 > 90.0 12.0 deg
MPC_TKO_RAMP_T (FLOAT)

Position control smooth takeoff ramp time constant

Comment: Increasing this value will make automatic and manual takeoff slower. If it's too slow the drone might scratch the ground and tip over.

0.1 > 1 0.4
MPC_TKO_SPEED (FLOAT)

Takeoff climb rate

1 > 5 1.5 m/s
MPC_VELD_LP (FLOAT)

Low pass filter cut freq. for numerical velocity derivative

0.0 > 10 5.0 Hz
MPC_VEL_MANUAL (FLOAT)

Maximum horizontal velocity setpoint for manual controlled mode If velocity setpoint larger than MPC_XY_VEL_MAX is set, then the setpoint will be capped to MPC_XY_VEL_MAX

3.0 > 20.0 (1) 10.0 m/s
MPC_XY_CRUISE (FLOAT)

Maximum horizontal velocity in mission

Comment: Normal horizontal velocity in AUTO modes (includes also RTL / hold / etc.) and endpoint for position stabilized mode (POSCTRL).

3.0 > 20.0 (1) 5.0 m/s
MPC_XY_MAN_EXPO (FLOAT)

Manual control stick exponential curve sensitivity attenuation with small velocity setpoints

Comment: The higher the value the less sensitivity the stick has around zero while still reaching the maximum value with full stick deflection. 0 Purely linear input curve (default) 1 Purely cubic input curve

0 > 1 0.0
MPC_XY_P (FLOAT)

Proportional gain for horizontal position error

0.0 > 2.0 0.95
MPC_XY_VEL_D (FLOAT)

Differential gain for horizontal velocity error. Small values help reduce fast oscillations. If value is too big oscillations will appear again

0.005 > 0.1 0.01
MPC_XY_VEL_I (FLOAT)

Integral gain for horizontal velocity error

Comment: Non-zero value allows to resist wind.

0.0 > 0.1 0.02
MPC_XY_VEL_MAX (FLOAT)

Maximum horizontal velocity

Comment: Maximum horizontal velocity in AUTO mode. If higher speeds are commanded in a mission they will be capped to this velocity.

0.0 > 20.0 (1) 12.0 m/s
MPC_XY_VEL_P (FLOAT)

Proportional gain for horizontal velocity error

0.06 > 0.15 0.09
MPC_Z_MAN_EXPO (FLOAT)

Manual control stick vertical exponential curve

Comment: The higher the value the less sensitivity the stick has around zero while still reaching the maximum value with full stick deflection. 0 Purely linear input curve (default) 1 Purely cubic input curve

0 > 1 0.0
MPC_Z_P (FLOAT)

Proportional gain for vertical position error

0.0 > 1.5 1.0
MPC_Z_VEL_D (FLOAT)

Differential gain for vertical velocity error

0.0 > 0.1 0.0
MPC_Z_VEL_I (FLOAT)

Integral gain for vertical velocity error

Comment: Non zero value allows hovering thrust estimation on stabilized or autonomous takeoff.

0.01 > 0.1 0.02
MPC_Z_VEL_MAX_DN (FLOAT)

Maximum vertical descent velocity

Comment: Maximum vertical velocity in AUTO mode and endpoint for stabilized modes (ALTCTRL, POSCTRL).

0.5 > 4.0 1.0 m/s
MPC_Z_VEL_MAX_UP (FLOAT)

Maximum vertical ascent velocity

Comment: Maximum vertical velocity in AUTO mode and endpoint for stabilized modes (ALTCTRL, POSCTRL).

0.5 > 8.0 3.0 m/s
MPC_Z_VEL_P (FLOAT)

Proportional gain for vertical velocity error

0.1 > 0.4 0.2

PWM Outputs

NameDescriptionMin > Max (Incr.)DefaultUnits
MOT_ORDERING (INT32)

Motor Ordering

Comment: Determines the motor ordering. This can be used for example in combination with a 4-in-1 ESC that assumes a motor ordering which is different from PX4. ONLY supported for Quads. ONLY supported for fmu output (Pixracer or Omnibus F4). When changing this, make sure to test the motor response without props first.

Values:
  • 0: PX4
  • 1: Betaflight / Cleanflight

Module: drivers/px4fmu

0 > 1 0
MOT_SLEW_MAX (FLOAT)

Minimum motor rise time (slew rate limit)

Comment: Minimum time allowed for the motor input signal to pass through a range of 1000 PWM units. A value x means that the motor signal can only go from 1000 to 2000 PWM in maximum x seconds. Zero means that slew rate limiting is disabled.

Module: drivers/px4fmu

0.0 > ? 0.0 s/(1000*PWM)
PWM_AUX_DIS1 (INT32)

Set the disarmed PWM for the AUX 1 output

Comment: This is the PWM pulse the autopilot is outputting if not armed. When set to -1 the value for PWM_AUX_DISARMED will be used

Reboot required: true

Module: modules/sensors

-1 > 2200 -1 us
PWM_AUX_DIS2 (INT32)

Set the disarmed PWM for the AUX 2 output

Comment: This is the PWM pulse the autopilot is outputting if not armed. When set to -1 the value for PWM_AUX_DISARMED will be used

Reboot required: true

Module: modules/sensors

-1 > 2200 -1 us
PWM_AUX_DIS3 (INT32)

Set the disarmed PWM for the AUX 3 output

Comment: This is the PWM pulse the autopilot is outputting if not armed. When set to -1 the value for PWM_AUX_DISARMED will be used

Reboot required: true

Module: modules/sensors

-1 > 2200 -1 us
PWM_AUX_DIS4 (INT32)

Set the disarmed PWM for the AUX 4 output

Comment: This is the PWM pulse the autopilot is outputting if not armed. When set to -1 the value for PWM_AUX_DISARMED will be used

Reboot required: true

Module: modules/sensors

-1 > 2200 -1 us
PWM_AUX_DIS5 (INT32)

Set the disarmed PWM for the AUX 5 output

Comment: This is the PWM pulse the autopilot is outputting if not armed. When set to -1 the value for PWM_AUX_DISARMED will be used

Reboot required: true

Module: modules/sensors

-1 > 2200 -1 us
PWM_AUX_DIS6 (INT32)

Set the disarmed PWM for the AUX 6 output

Comment: This is the PWM pulse the autopilot is outputting if not armed. When set to -1 the value for PWM_AUX_DISARMED will be used

Reboot required: true

Module: modules/sensors

-1 > 2200 -1 us
PWM_AUX_DISARMED (INT32)

Set the disarmed PWM for auxiliary outputs

Comment: This is the PWM pulse the autopilot is outputting if not armed. The main use of this parameter is to silence ESCs when they are disarmed.

Reboot required: true

Module: modules/sensors

0 > 2200 1500 us
PWM_AUX_MAX (INT32)

Set the maximum PWM for the auxiliary outputs

Comment: Set to 2000 for default or 2100 to increase servo travel

Reboot required: true

Module: modules/sensors

1600 > 2200 2000 us
PWM_AUX_MIN (INT32)

Set the minimum PWM for the auxiliary outputs

Comment: Set to 1000 for default or 900 to increase servo travel

Reboot required: true

Module: modules/sensors

800 > 1400 1000 us
PWM_AUX_REV1 (INT32)

Invert direction of aux output channel 1

Comment: Enable to invert the channel.

Module: drivers/px4fmu

0
PWM_AUX_REV2 (INT32)

Invert direction of aux output channel 2

Comment: Enable to invert the channel.

Module: drivers/px4fmu

0
PWM_AUX_REV3 (INT32)

Invert direction of aux output channel 3

Comment: Enable to invert the channel.

Module: drivers/px4fmu

0
PWM_AUX_REV4 (INT32)

Invert direction of aux output channel 4

Comment: Enable to invert the channel.

Module: drivers/px4fmu

0
PWM_AUX_REV5 (INT32)

Invert direction of aux output channel 5

Comment: Enable to invert the channel.

Module: drivers/px4fmu

0
PWM_AUX_REV6 (INT32)

Invert direction of aux output channel 6

Comment: Enable to invert the channel.

Module: drivers/px4fmu

0
PWM_AUX_TRIM1 (FLOAT)

Trim value for FMU PWM output channel 1

Comment: Set to normalized offset

Module: drivers/px4fmu

-0.2 > 0.2 0
PWM_AUX_TRIM2 (FLOAT)

Trim value for FMU PWM output channel 2

Comment: Set to normalized offset

Module: drivers/px4fmu

-0.2 > 0.2 0
PWM_AUX_TRIM3 (FLOAT)

Trim value for FMU PWM output channel 3

Comment: Set to normalized offset

Module: drivers/px4fmu

-0.2 > 0.2 0
PWM_AUX_TRIM4 (FLOAT)

Trim value for FMU PWM output channel 4

Comment: Set to normalized offset

Module: drivers/px4fmu

-0.2 > 0.2 0
PWM_AUX_TRIM5 (FLOAT)

Trim value for FMU PWM output channel 5

Comment: Set to normalized offset

Module: drivers/px4fmu

-0.2 > 0.2 0
PWM_AUX_TRIM6 (FLOAT)

Trim value for FMU PWM output channel 6

Comment: Set to normalized offset

Module: drivers/px4fmu

-0.2 > 0.2 0
PWM_DISARMED (INT32)

Set the disarmed PWM for the main outputs

Comment: This is the PWM pulse the autopilot is outputting if not armed. The main use of this parameter is to silence ESCs when they are disarmed.

Reboot required: true

Module: modules/sensors

0 > 2200 900 us
PWM_MAIN_DIS1 (INT32)

Set the disarmed PWM for the main 1 output

Comment: This is the PWM pulse the autopilot is outputting if not armed. When set to -1 the value for PWM_DISARMED will be used

Reboot required: true

Module: modules/sensors

-1 > 2200 -1 us
PWM_MAIN_DIS2 (INT32)

Set the disarmed PWM for the main 2 output

Comment: This is the PWM pulse the autopilot is outputting if not armed. When set to -1 the value for PWM_DISARMED will be used

Reboot required: true

Module: modules/sensors

-1 > 2200 -1 us
PWM_MAIN_DIS3 (INT32)

Set the disarmed PWM for the main 3 output

Comment: This is the PWM pulse the autopilot is outputting if not armed. When set to -1 the value for PWM_DISARMED will be used

Reboot required: true

Module: modules/sensors

-1 > 2200 -1 us
PWM_MAIN_DIS4 (INT32)

Set the disarmed PWM for the main 4 output

Comment: This is the PWM pulse the autopilot is outputting if not armed. When set to -1 the value for PWM_DISARMED will be used

Reboot required: true

Module: modules/sensors

-1 > 2200 -1 us
PWM_MAIN_DIS5 (INT32)

Set the disarmed PWM for the main 5 output

Comment: This is the PWM pulse the autopilot is outputting if not armed. When set to -1 the value for PWM_DISARMED will be used

Reboot required: true

Module: modules/sensors

-1 > 2200 -1 us
PWM_MAIN_DIS6 (INT32)

Set the disarmed PWM for the main 6 output

Comment: This is the PWM pulse the autopilot is outputting if not armed. When set to -1 the value for PWM_DISARMED will be used

Reboot required: true

Module: modules/sensors

-1 > 2200 -1 us
PWM_MAIN_DIS7 (INT32)

Set the disarmed PWM for the main 7 output

Comment: This is the PWM pulse the autopilot is outputting if not armed. When set to -1 the value for PWM_DISARMED will be used

Reboot required: true

Module: modules/sensors

-1 > 2200 -1 us
PWM_MAIN_DIS8 (INT32)

Set the disarmed PWM for the main 8 output

Comment: This is the PWM pulse the autopilot is outputting if not armed. When set to -1 the value for PWM_DISARMED will be used

Reboot required: true

Module: modules/sensors

-1 > 2200 -1 us
PWM_MAIN_REV1 (INT32)

Invert direction of main output channel 1

Comment: Enable to invert the channel.

Module: drivers/px4io

0
PWM_MAIN_REV2 (INT32)

Invert direction of main output channel 2

Comment: Enable to invert the channel.

Module: drivers/px4io

0
PWM_MAIN_REV3 (INT32)

Invert direction of main output channel 3

Comment: Enable to invert the channel.

Module: drivers/px4io

0
PWM_MAIN_REV4 (INT32)

Invert direction of main output channel 4

Comment: Enable to invert the channel.

Module: drivers/px4io

0
PWM_MAIN_REV5 (INT32)

Invert direction of main output channel 5

Comment: Enable to invert the channel.

Module: drivers/px4io

0
PWM_MAIN_REV6 (INT32)

Invert direction of main output channel 6

Comment: Enable to invert the channel.

Module: drivers/px4io

0
PWM_MAIN_REV7 (INT32)

Invert direction of main output channel 7

Comment: Enable to invert the channel.

Module: drivers/px4io

0
PWM_MAIN_REV8 (INT32)

Invert direction of main output channel 8

Comment: Enable to invert the channel.

Module: drivers/px4io

0
PWM_MAIN_TRIM1 (FLOAT)

Trim value for main output channel 1

Comment: Set to normalized offset

Module: drivers/px4io

-0.2 > 0.2 0
PWM_MAIN_TRIM2 (FLOAT)

Trim value for main output channel 2

Comment: Set to normalized offset

Module: drivers/px4io

-0.2 > 0.2 0
PWM_MAIN_TRIM3 (FLOAT)

Trim value for main output channel 3

Comment: Set to normalized offset

Module: drivers/px4io

-0.2 > 0.2 0
PWM_MAIN_TRIM4 (FLOAT)

Trim value for main output channel 4

Comment: Set to normalized offset

Module: drivers/px4io

-0.2 > 0.2 0
PWM_MAIN_TRIM5 (FLOAT)

Trim value for main output channel 5

Comment: Set to normalized offset

Module: drivers/px4io

-0.2 > 0.2 0
PWM_MAIN_TRIM6 (FLOAT)

Trim value for main output channel 6

Comment: Set to normalized offset

Module: drivers/px4io

-0.2 > 0.2 0
PWM_MAIN_TRIM7 (FLOAT)

Trim value for main output channel 7

Comment: Set to normalized offset

Module: drivers/px4io

-0.2 > 0.2 0
PWM_MAIN_TRIM8 (FLOAT)

Trim value for main output channel 8

Comment: Set to normalized offset

Module: drivers/px4io

-0.2 > 0.2 0
PWM_MAX (INT32)

Set the maximum PWM for the main outputs

Comment: Set to 2000 for industry default or 2100 to increase servo travel.

Reboot required: true

Module: modules/sensors

1600 > 2200 2000 us
PWM_MIN (INT32)

Set the minimum PWM for the main outputs

Comment: Set to 1000 for industry default or 900 to increase servo travel.

Reboot required: true

Module: modules/sensors

800 > 1400 1000 us
PWM_RATE (INT32)

Set the PWM output frequency for the main outputs

Comment: Set to 400 for industry default or 1000 for high frequency ESCs. Set to 0 for Oneshot125.

Reboot required: true

Module: modules/sensors

-1 > 2000 400 Hz
PWM_SBUS_MODE (INT32)

S.BUS out

Comment: Set to 1 to enable S.BUS version 1 output instead of RSSI.

Module: drivers/px4io

0
THR_MDL_FAC (FLOAT)

Thrust to PWM model parameter

Comment: Parameter used to model the relationship between static thrust and motor input PWM. Model is: thrust = (1-factor)*PWM + factor * PWM^2

Module: drivers/px4fmu

0.0 > 1.0 0.0

Payload drop

The module where these parameters are defined is: examples/bottle_drop.

NameDescriptionMin > Max (Incr.)DefaultUnits
BD_GPROPERTIES (FLOAT)

Ground drag property

Comment: This parameter encodes the ground drag coefficient and the corresponding decrease in wind speed from the plane altitude to ground altitude.

0.001 > 0.1 0.03
BD_OBJ_CD (FLOAT)

Payload drag coefficient of the dropped object

Comment: The drag coefficient (cd) is the typical drag constant for air. It is in general object specific, but the closest primitive shape to the actual object should give good results: http://en.wikipedia.org/wiki/Drag_coefficient

0.08 > 1.5 0.1
BD_OBJ_MASS (FLOAT)

Payload mass

Comment: A typical small toy ball: 0.025 kg OBC water bottle: 0.6 kg

0.001 > 5.0 0.6 kg
BD_OBJ_SURFACE (FLOAT)

Payload front surface area

Comment: A typical small toy ball: (0.045 * 0.045) / 4.0 * pi = 0.001590 m^2 OBC water bottle: (0.063 * 0.063) / 4.0 * pi = 0.003117 m^2

0.001 > 0.5 0.00311724531 m^2
BD_PRECISION (FLOAT)

Drop precision

Comment: If the system is closer than this distance on passing over the drop position, it will release the payload. This is a safeguard to prevent a drop out of the required accuracy.

1.0 > 80.0 30.0 m
BD_TURNRADIUS (FLOAT)

Plane turn radius

Comment: The planes known minimal turn radius - use a higher value to make the plane maneuver more distant from the actual drop position. This is to ensure the wings are level during the drop.

30.0 > 500.0 120.0 m

Position Estimator INAV

The module where these parameters are defined is: modules/position_estimator_inav.

NameDescriptionMin > Max (Incr.)DefaultUnits
CBRK_NO_VISION (INT32)

Disable vision input

Comment: Set to the appropriate key (328754) to disable vision input.

Reboot required: true

0 > 328754 0
INAV_DELAY_GPS (FLOAT)

GPS delay

Comment: GPS delay compensation

0.0 > 1.0 0.2 s
INAV_DISAB_MOCAP (FLOAT)

Mo-cap

Comment: Set to 0 if using fake GPS

Values:
  • 0: Mo-cap enabled
  • 1: Mo-cap disabled
0
INAV_FLOW_DIST_X (FLOAT)

Flow module offset (center of rotation) in X direction

Comment: Yaw X flow compensation

-1.0 > 1.0 0.0 m
INAV_FLOW_DIST_Y (FLOAT)

Flow module offset (center of rotation) in Y direction

Comment: Yaw Y flow compensation

-1.0 > 1.0 0.0 m
INAV_FLOW_K (FLOAT)

Optical flow scale factor

Comment: Factor to scale optical flow

0.0 > 10.0 1.35
INAV_FLOW_Q_MIN (FLOAT)

Minimal acceptable optical flow quality

Comment: 0 - lowest quality, 1 - best quality.

0.0 > 1.0 0.3
INAV_LAND_DISP (FLOAT)

Land detector altitude dispersion threshold

Comment: Dispersion threshold for triggering land detector.

0.0 > 10.0 0.7 m
INAV_LAND_T (FLOAT)

Land detector time

Comment: Vehicle assumed landed if no altitude changes happened during this time on low throttle.

0.0 > 10.0 3.0 s
INAV_LAND_THR (FLOAT)

Land detector throttle threshold

Comment: Value should be lower than minimal hovering thrust. Half of it is good choice.

0.0 > 1.0 0.2
INAV_LIDAR_ERR (FLOAT)

Sonar maximal error for new surface

Comment: If sonar measurement error is larger than this value it skiped (spike) or accepted as new surface level (if offset is stable).

0.0 > 1.0 0.2 m
INAV_LIDAR_EST (FLOAT)

LIDAR for altitude estimation

0
INAV_LIDAR_OFF (FLOAT)

LIDAR calibration offset

Comment: LIDAR calibration offset. Value will be added to the measured distance

-20 > 20 0.0 m
INAV_W_ACC_BIAS (FLOAT)

Accelerometer bias estimation weight

Comment: Weight (cutoff frequency) for accelerometer bias estimation. 0 to disable.

0.0 > 0.1 0.05
INAV_W_GPS_FLOW (FLOAT)

XY axis weight factor for GPS when optical flow available

Comment: When optical flow data available, multiply GPS weights (for position and velocity) by this factor.

0.0 > 1.0 0.1
INAV_W_MOC_P (FLOAT)

Weight for mocap system

Comment: Weight (cutoff frequency) for mocap position measurements.

0.0 > 10.0 10.0
INAV_W_XY_FLOW (FLOAT)

XY axis weight for optical flow

Comment: Weight (cutoff frequency) for optical flow (velocity) measurements.

0.0 > 10.0 0.8
INAV_W_XY_GPS_P (FLOAT)

XY axis weight for GPS position

Comment: Weight (cutoff frequency) for GPS position measurements.

0.0 > 10.0 1.0
INAV_W_XY_GPS_V (FLOAT)

XY axis weight for GPS velocity

Comment: Weight (cutoff frequency) for GPS velocity measurements.

0.0 > 10.0 2.0
INAV_W_XY_RES_V (FLOAT)

XY axis weight for resetting velocity

Comment: When velocity sources lost slowly decrease estimated horizontal velocity with this weight.

0.0 > 10.0 0.5
INAV_W_XY_VIS_P (FLOAT)

XY axis weight for vision position

Comment: Weight (cutoff frequency) for vision position measurements.

0.0 > 10.0 7.0
INAV_W_XY_VIS_V (FLOAT)

XY axis weight for vision velocity

Comment: Weight (cutoff frequency) for vision velocity measurements.

0.0 > 10.0 0.0
INAV_W_Z_BARO (FLOAT)

Z axis weight for barometer

Comment: Weight (cutoff frequency) for barometer altitude measurements.

0.0 > 10.0 0.5
INAV_W_Z_GPS_P (FLOAT)

Z axis weight for GPS

Comment: Weight (cutoff frequency) for GPS altitude measurements. GPS altitude data is very noisy and should be used only as slow correction for baro offset.

0.0 > 10.0 0.005
INAV_W_Z_GPS_V (FLOAT)

Z velocity weight for GPS

Comment: Weight (cutoff frequency) for GPS altitude velocity measurements.

0.0 > 10.0 0.0
INAV_W_Z_LIDAR (FLOAT)

Z axis weight for lidar

Comment: Weight (cutoff frequency) for lidar measurements.

0.0 > 10.0 3.0
INAV_W_Z_VIS_P (FLOAT)

Z axis weight for vision

Comment: Weight (cutoff frequency) for vision altitude measurements. vision altitude data is very noisy and should be used only as slow correction for baro offset.

0.0 > 10.0 5.0

Precision Land

The module where these parameters are defined is: modules/navigator.

NameDescriptionMin > Max (Incr.)DefaultUnits
PLD_BTOUT (FLOAT)

Landing Target Timeout

Comment: Time after which the landing target is considered lost without any new measurements.

0.0 > 50 (0.5) 5.0 s
PLD_FAPPR_ALT (FLOAT)

Final approach altitude

Comment: Allow final approach (without horizontal positioning) if losing landing target closer than this to the ground.

0.0 > 10 (0.1) 0.1 m
PLD_HACC_RAD (FLOAT)

Horizontal acceptance radius

Comment: Start descending if closer above landing target than this.

0.0 > 10 (0.1) 0.2 m
PLD_MAX_SRCH (INT32)

Maximum number of search attempts

Comment: Maximum number of times to seach for the landing target if it is lost during the precision landing.

0 > 100 3
PLD_SRCH_ALT (FLOAT)

Search altitude

Comment: Altitude above home to which to climb when searching for the landing target.

0.0 > 100 (0.1) 10.0 m
PLD_SRCH_TOUT (FLOAT)

Search timeout

Comment: Time allowed to search for the landing target before falling back to normal landing.

0.0 > 100 (0.1) 10.0 s

RC Receiver Configuration

The module where these parameters are defined is: platforms/qurt/fc_addon/rc_receiver.

NameDescriptionMin > Max (Incr.)DefaultUnits
RC_RECEIVER_TYPE (INT32)

RC receiver type

Comment: Acceptable values: - RC_RECEIVER_SPEKTRUM = 1, - RC_RECEIVER_LEMONRX = 2,

1

Radio Calibration

NameDescriptionMin > Max (Incr.)DefaultUnits
RC10_DZ (FLOAT)

RC channel 10 dead zone

Comment: The +- range of this value around the trim value will be considered as zero.

Module: modules/sensors

0.0 > 100.0 0.0
RC10_MAX (FLOAT)

RC channel 10 maximum

Comment: Maximum value for this channel.

Module: modules/sensors

1500.0 > 2200.0 2000 us
RC10_MIN (FLOAT)

RC channel 10 minimum

Comment: Minimum value for this channel.

Module: modules/sensors

800.0 > 1500.0 1000 us
RC10_REV (FLOAT)

RC channel 10 reverse

Comment: Set to -1 to reverse channel.

Values:
  • -1.0: Reverse
  • 1.0: Normal

Module: modules/sensors

-1.0 > 1.0 1.0
RC10_TRIM (FLOAT)

RC channel 10 trim

Comment: Mid point value (has to be set to the same as min for throttle channel).

Module: modules/sensors

800.0 > 2200.0 1500 us
RC11_DZ (FLOAT)

RC channel 11 dead zone

Comment: The +- range of this value around the trim value will be considered as zero.

Module: modules/sensors

0.0 > 100.0 0.0
RC11_MAX (FLOAT)

RC channel 11 maximum

Comment: Maximum value for this channel.

Module: modules/sensors

1500.0 > 2200.0 2000 us
RC11_MIN (FLOAT)

RC channel 11 minimum

Comment: Minimum value for this channel.

Module: modules/sensors

800.0 > 1500.0 1000 us
RC11_REV (FLOAT)

RC channel 11 reverse

Comment: Set to -1 to reverse channel.

Values:
  • -1.0: Reverse
  • 1.0: Normal

Module: modules/sensors

-1.0 > 1.0 1.0
RC11_TRIM (FLOAT)

RC channel 11 trim

Comment: Mid point value (has to be set to the same as min for throttle channel).

Module: modules/sensors

800.0 > 2200.0 1500 us
RC12_DZ (FLOAT)

RC channel 12 dead zone

Comment: The +- range of this value around the trim value will be considered as zero.

Module: modules/sensors

0.0 > 100.0 0.0
RC12_MAX (FLOAT)

RC channel 12 maximum

Comment: Maximum value for this channel.

Module: modules/sensors

1500.0 > 2200.0 2000 us
RC12_MIN (FLOAT)

RC channel 12 minimum

Comment: Minimum value for this channel.

Module: modules/sensors

800.0 > 1500.0 1000 us
RC12_REV (FLOAT)

RC channel 12 reverse

Comment: Set to -1 to reverse channel.

Values:
  • -1.0: Reverse
  • 1.0: Normal

Module: modules/sensors

-1.0 > 1.0 1.0
RC12_TRIM (FLOAT)

RC channel 12 trim

Comment: Mid point value (has to be set to the same as min for throttle channel).

Module: modules/sensors

800.0 > 2200.0 1500 us
RC13_DZ (FLOAT)

RC channel 13 dead zone

Comment: The +- range of this value around the trim value will be considered as zero.

Module: modules/sensors

0.0 > 100.0 0.0
RC13_MAX (FLOAT)

RC channel 13 maximum

Comment: Maximum value for this channel.

Module: modules/sensors

1500.0 > 2200.0 2000 us
RC13_MIN (FLOAT)

RC channel 13 minimum

Comment: Minimum value for this channel.

Module: modules/sensors

800.0 > 1500.0 1000 us
RC13_REV (FLOAT)

RC channel 13 reverse

Comment: Set to -1 to reverse channel.

Values:
  • -1.0: Reverse
  • 1.0: Normal

Module: modules/sensors

-1.0 > 1.0 1.0
RC13_TRIM (FLOAT)

RC channel 13 trim

Comment: Mid point value (has to be set to the same as min for throttle channel).

Module: modules/sensors

800.0 > 2200.0 1500 us
RC14_DZ (FLOAT)

RC channel 14 dead zone

Comment: The +- range of this value around the trim value will be considered as zero.

Module: modules/sensors

0.0 > 100.0 0.0
RC14_MAX (FLOAT)

RC channel 14 maximum

Comment: Maximum value for this channel.

Module: modules/sensors

1500.0 > 2200.0 2000 us
RC14_MIN (FLOAT)

RC channel 14 minimum

Comment: Minimum value for this channel.

Module: modules/sensors

800.0 > 1500.0 1000 us
RC14_REV (FLOAT)

RC channel 14 reverse

Comment: Set to -1 to reverse channel.

Values:
  • -1.0: Reverse
  • 1.0: Normal

Module: modules/sensors

-1.0 > 1.0 1.0
RC14_TRIM (FLOAT)

RC channel 14 trim

Comment: Mid point value (has to be set to the same as min for throttle channel).

Module: modules/sensors

800.0 > 2200.0 1500 us
RC15_DZ (FLOAT)

RC channel 15 dead zone

Comment: The +- range of this value around the trim value will be considered as zero.

Module: modules/sensors

0.0 > 100.0 0.0
RC15_MAX (FLOAT)

RC channel 15 maximum

Comment: Maximum value for this channel.

Module: modules/sensors

1500.0 > 2200.0 2000 us
RC15_MIN (FLOAT)

RC channel 15 minimum

Comment: Minimum value for this channel.

Module: modules/sensors

800.0 > 1500.0 1000 us
RC15_REV (FLOAT)

RC channel 15 reverse

Comment: Set to -1 to reverse channel.

Values:
  • -1.0: Reverse
  • 1.0: Normal

Module: modules/sensors

-1.0 > 1.0 1.0
RC15_TRIM (FLOAT)

RC channel 15 trim

Comment: Mid point value (has to be set to the same as min for throttle channel).

Module: modules/sensors

800.0 > 2200.0 1500 us
RC16_DZ (FLOAT)

RC channel 16 dead zone

Comment: The +- range of this value around the trim value will be considered as zero.

Module: modules/sensors

0.0 > 100.0 0.0
RC16_MAX (FLOAT)

RC channel 16 maximum

Comment: Maximum value for this channel.

Module: modules/sensors

1500.0 > 2200.0 2000 us
RC16_MIN (FLOAT)

RC channel 16 minimum

Comment: Minimum value for this channel.

Module: modules/sensors

800.0 > 1500.0 1000 us
RC16_REV (FLOAT)

RC channel 16 reverse

Comment: Set to -1 to reverse channel.

Values:
  • -1.0: Reverse
  • 1.0: Normal

Module: modules/sensors

-1.0 > 1.0 1.0
RC16_TRIM (FLOAT)

RC channel 16 trim

Comment: Mid point value (has to be set to the same as min for throttle channel).

Module: modules/sensors

800.0 > 2200.0 1500 us
RC17_DZ (FLOAT)

RC channel 17 dead zone

Comment: The +- range of this value around the trim value will be considered as zero.

Module: modules/sensors

0.0 > 100.0 0.0
RC17_MAX (FLOAT)

RC channel 17 maximum

Comment: Maximum value for this channel.

Module: modules/sensors

1500.0 > 2200.0 2000 us
RC17_MIN (FLOAT)

RC channel 17 minimum

Comment: Minimum value for this channel.

Module: modules/sensors

800.0 > 1500.0 1000 us
RC17_REV (FLOAT)

RC channel 17 reverse

Comment: Set to -1 to reverse channel.

Values:
  • -1.0: Reverse
  • 1.0: Normal

Module: modules/sensors

-1.0 > 1.0 1.0
RC17_TRIM (FLOAT)

RC channel 17 trim

Comment: Mid point value (has to be set to the same as min for throttle channel).

Module: modules/sensors

800.0 > 2200.0 1500 us
RC18_DZ (FLOAT)

RC channel 18 dead zone

Comment: The +- range of this value around the trim value will be considered as zero.

Module: modules/sensors

0.0 > 100.0 0.0
RC18_MAX (FLOAT)

RC channel 18 maximum

Comment: Maximum value for this channel.

Module: modules/sensors

1500.0 > 2200.0 2000 us
RC18_MIN (FLOAT)

RC channel 18 minimum

Comment: Minimum value for this channel.

Module: modules/sensors

800.0 > 1500.0 1000 us
RC18_REV (FLOAT)

RC channel 18 reverse

Comment: Set to -1 to reverse channel.

Values:
  • -1.0: Reverse
  • 1.0: Normal

Module: modules/sensors

-1.0 > 1.0 1.0
RC18_TRIM (FLOAT)

RC channel 18 trim

Comment: Mid point value (has to be set to the same as min for throttle channel).

Module: modules/sensors

800.0 > 2200.0 1500 us
RC1_DZ (FLOAT)

RC channel 1 dead zone

Comment: The +- range of this value around the trim value will be considered as zero.

Module: modules/sensors

0.0 > 100.0 10.0 us
RC1_MAX (FLOAT)

RC channel 1 maximum

Comment: Maximum value for RC channel 1

Module: modules/sensors

1500.0 > 2200.0 2000.0 us
RC1_MIN (FLOAT)

RC channel 1 minimum

Comment: Minimum value for RC channel 1

Module: modules/sensors

800.0 > 1500.0 1000.0 us
RC1_REV (FLOAT)

RC channel 1 reverse

Comment: Set to -1 to reverse channel.

Values:
  • -1.0: Reverse
  • 1.0: Normal

Module: modules/sensors

-1.0 > 1.0 1.0
RC1_TRIM (FLOAT)

RC channel 1 trim

Comment: Mid point value (same as min for throttle)

Module: modules/sensors

800.0 > 2200.0 1500.0 us
RC2_DZ (FLOAT)

RC channel 2 dead zone

Comment: The +- range of this value around the trim value will be considered as zero.

Module: modules/sensors

0.0 > 100.0 10.0 us
RC2_MAX (FLOAT)

RC channel 2 maximum

Comment: Maximum value for this channel.

Module: modules/sensors

1500.0 > 2200.0 2000.0 us
RC2_MIN (FLOAT)

RC channel 2 minimum

Comment: Minimum value for this channel.

Module: modules/sensors

800.0 > 1500.0 1000.0 us
RC2_REV (FLOAT)

RC channel 2 reverse

Comment: Set to -1 to reverse channel.

Values:
  • -1.0: Reverse
  • 1.0: Normal

Module: modules/sensors

-1.0 > 1.0 1.0
RC2_TRIM (FLOAT)

RC channel 2 trim

Comment: Mid point value (has to be set to the same as min for throttle channel).

Module: modules/sensors

800.0 > 2200.0 1500.0 us
RC3_DZ (FLOAT)

RC channel 3 dead zone

Comment: The +- range of this value around the trim value will be considered as zero.

Module: modules/sensors

0.0 > 100.0 10.0 us
RC3_MAX (FLOAT)

RC channel 3 maximum

Comment: Maximum value for this channel.

Module: modules/sensors

1500.0 > 2200.0 2000 us
RC3_MIN (FLOAT)

RC channel 3 minimum

Comment: Minimum value for this channel.

Module: modules/sensors

800.0 > 1500.0 1000 us
RC3_REV (FLOAT)

RC channel 3 reverse

Comment: Set to -1 to reverse channel.

Values:
  • -1.0: Reverse
  • 1.0: Normal

Module: modules/sensors

-1.0 > 1.0 1.0
RC3_TRIM (FLOAT)

RC channel 3 trim

Comment: Mid point value (has to be set to the same as min for throttle channel).

Module: modules/sensors

800.0 > 2200.0 1500 us
RC4_DZ (FLOAT)

RC channel 4 dead zone

Comment: The +- range of this value around the trim value will be considered as zero.

Module: modules/sensors

0.0 > 100.0 10.0 us
RC4_MAX (FLOAT)

RC channel 4 maximum

Comment: Maximum value for this channel.

Module: modules/sensors

1500.0 > 2200.0 2000 us
RC4_MIN (FLOAT)

RC channel 4 minimum

Comment: Minimum value for this channel.

Module: modules/sensors

800.0 > 1500.0 1000 us
RC4_REV (FLOAT)

RC channel 4 reverse

Comment: Set to -1 to reverse channel.

Values:
  • -1.0: Reverse
  • 1.0: Normal

Module: modules/sensors

-1.0 > 1.0 1.0
RC4_TRIM (FLOAT)

RC channel 4 trim

Comment: Mid point value (has to be set to the same as min for throttle channel).

Module: modules/sensors

800.0 > 2200.0 1500 us
RC5_DZ (FLOAT)

RC channel 5 dead zone

Comment: The +- range of this value around the trim value will be considered as zero.

Module: modules/sensors

0.0 > 100.0 10.0
RC5_MAX (FLOAT)

RC channel 5 maximum

Comment: Maximum value for this channel.

Module: modules/sensors

1500.0 > 2200.0 2000 us
RC5_MIN (FLOAT)

RC channel 5 minimum

Comment: Minimum value for this channel.

Module: modules/sensors

800.0 > 1500.0 1000 us
RC5_REV (FLOAT)

RC channel 5 reverse

Comment: Set to -1 to reverse channel.

Values:
  • -1.0: Reverse
  • 1.0: Normal

Module: modules/sensors

-1.0 > 1.0 1.0
RC5_TRIM (FLOAT)

RC channel 5 trim

Comment: Mid point value (has to be set to the same as min for throttle channel).

Module: modules/sensors

800.0 > 2200.0 1500 us
RC6_DZ (FLOAT)

RC channel 6 dead zone

Comment: The +- range of this value around the trim value will be considered as zero.

Module: modules/sensors

0.0 > 100.0 10.0
RC6_MAX (FLOAT)

RC channel 6 maximum

Comment: Maximum value for this channel.

Module: modules/sensors

1500.0 > 2200.0 2000 us
RC6_MIN (FLOAT)

RC channel 6 minimum

Comment: Minimum value for this channel.

Module: modules/sensors

800.0 > 1500.0 1000 us
RC6_REV (FLOAT)

RC channel 6 reverse

Comment: Set to -1 to reverse channel.

Values:
  • -1.0: Reverse
  • 1.0: Normal

Module: modules/sensors

-1.0 > 1.0 1.0
RC6_TRIM (FLOAT)

RC channel 6 trim

Comment: Mid point value (has to be set to the same as min for throttle channel).

Module: modules/sensors

800.0 > 2200.0 1500 us
RC7_DZ (FLOAT)

RC channel 7 dead zone

Comment: The +- range of this value around the trim value will be considered as zero.

Module: modules/sensors

0.0 > 100.0 10.0
RC7_MAX (FLOAT)

RC channel 7 maximum

Comment: Maximum value for this channel.

Module: modules/sensors

1500.0 > 2200.0 2000 us
RC7_MIN (FLOAT)

RC channel 7 minimum

Comment: Minimum value for this channel.

Module: modules/sensors

800.0 > 1500.0 1000 us
RC7_REV (FLOAT)

RC channel 7 reverse

Comment: Set to -1 to reverse channel.

Values:
  • -1.0: Reverse
  • 1.0: Normal

Module: modules/sensors

-1.0 > 1.0 1.0
RC7_TRIM (FLOAT)

RC channel 7 trim

Comment: Mid point value (has to be set to the same as min for throttle channel).

Module: modules/sensors

800.0 > 2200.0 1500 us
RC8_DZ (FLOAT)

RC channel 8 dead zone

Comment: The +- range of this value around the trim value will be considered as zero.

Module: modules/sensors

0.0 > 100.0 10.0
RC8_MAX (FLOAT)

RC channel 8 maximum

Comment: Maximum value for this channel.

Module: modules/sensors

1500.0 > 2200.0 2000 us
RC8_MIN (FLOAT)

RC channel 8 minimum

Comment: Minimum value for this channel.

Module: modules/sensors

800.0 > 1500.0 1000 us
RC8_REV (FLOAT)

RC channel 8 reverse

Comment: Set to -1 to reverse channel.

Values:
  • -1.0: Reverse
  • 1.0: Normal

Module: modules/sensors

-1.0 > 1.0 1.0
RC8_TRIM (FLOAT)

RC channel 8 trim

Comment: Mid point value (has to be set to the same as min for throttle channel).

Module: modules/sensors

800.0 > 2200.0 1500 us
RC9_DZ (FLOAT)

RC channel 9 dead zone

Comment: The +- range of this value around the trim value will be considered as zero.

Module: modules/sensors

0.0 > 100.0 0.0
RC9_MAX (FLOAT)

RC channel 9 maximum

Comment: Maximum value for this channel.

Module: modules/sensors

1500.0 > 2200.0 2000 us
RC9_MIN (FLOAT)

RC channel 9 minimum

Comment: Minimum value for this channel.

Module: modules/sensors

800.0 > 1500.0 1000 us
RC9_REV (FLOAT)

RC channel 9 reverse

Comment: Set to -1 to reverse channel.

Values:
  • -1.0: Reverse
  • 1.0: Normal

Module: modules/sensors

-1.0 > 1.0 1.0
RC9_TRIM (FLOAT)

RC channel 9 trim

Comment: Mid point value (has to be set to the same as min for throttle channel).

Module: modules/sensors

800.0 > 2200.0 1500 us
RC_CHAN_CNT (INT32)

RC channel count

Comment: This parameter is used by Ground Station software to save the number of channels which were used during RC calibration. It is only meant for ground station use.

Module: modules/sensors

0 > 18 0
RC_FAILS_THR (INT32)

Failsafe channel PWM threshold

Comment: Set to a value slightly above the PWM value assumed by throttle in a failsafe event, but ensure it is below the PWM value assumed by throttle during normal operation.

Module: modules/sensors

0 > 2200 0 us
RC_FLT_CUTOFF (FLOAT)

Cutoff frequency for the low pass filter on roll, pitch, yaw and throttle

Comment: Does not get set unless below RC_FLT_SMP_RATE/2 because of filter instability characteristics. Set to 0 to disable the filter.

Module: modules/sensors

0 > ? 10.0 Hz
RC_FLT_SMP_RATE (FLOAT)

Sample rate of the remote control values for the low pass filter on roll, pitch, yaw and throttle

Comment: Has an influence on the cutoff frequency precision.

Module: modules/sensors

1.0 > ? 50.0 Hz
RC_MAP_AUX1 (INT32)

AUX1 Passthrough RC channel

Comment: Default function: Camera pitch

Values:
  • 0: Unassigned
  • 1: Channel 1
  • 2: Channel 2
  • 3: Channel 3
  • 4: Channel 4
  • 5: Channel 5
  • 6: Channel 6
  • 7: Channel 7
  • 8: Channel 8
  • 9: Channel 9
  • 10: Channel 10
  • 11: Channel 11
  • 12: Channel 12
  • 13: Channel 13
  • 14: Channel 14
  • 15: Channel 15
  • 16: Channel 16
  • 17: Channel 17
  • 18: Channel 18

Module: modules/sensors

0 > 18 0
RC_MAP_AUX2 (INT32)

AUX2 Passthrough RC channel

Comment: Default function: Camera roll

Values:
  • 0: Unassigned
  • 1: Channel 1
  • 2: Channel 2
  • 3: Channel 3
  • 4: Channel 4
  • 5: Channel 5
  • 6: Channel 6
  • 7: Channel 7
  • 8: Channel 8
  • 9: Channel 9
  • 10: Channel 10
  • 11: Channel 11
  • 12: Channel 12
  • 13: Channel 13
  • 14: Channel 14
  • 15: Channel 15
  • 16: Channel 16
  • 17: Channel 17
  • 18: Channel 18

Module: modules/sensors

0 > 18 0
RC_MAP_AUX3 (INT32)

AUX3 Passthrough RC channel

Comment: Default function: Camera azimuth / yaw

Values:
  • 0: Unassigned
  • 1: Channel 1
  • 2: Channel 2
  • 3: Channel 3
  • 4: Channel 4
  • 5: Channel 5
  • 6: Channel 6
  • 7: Channel 7
  • 8: Channel 8
  • 9: Channel 9
  • 10: Channel 10
  • 11: Channel 11
  • 12: Channel 12
  • 13: Channel 13
  • 14: Channel 14
  • 15: Channel 15
  • 16: Channel 16
  • 17: Channel 17
  • 18: Channel 18

Module: modules/sensors

0 > 18 0
RC_MAP_AUX4 (INT32)

AUX4 Passthrough RC channel

Values:
  • 0: Unassigned
  • 1: Channel 1
  • 2: Channel 2
  • 3: Channel 3
  • 4: Channel 4
  • 5: Channel 5
  • 6: Channel 6
  • 7: Channel 7
  • 8: Channel 8
  • 9: Channel 9
  • 10: Channel 10
  • 11: Channel 11
  • 12: Channel 12
  • 13: Channel 13
  • 14: Channel 14
  • 15: Channel 15
  • 16: Channel 16
  • 17: Channel 17
  • 18: Channel 18

Module: modules/sensors

0 > 18 0
RC_MAP_AUX5 (INT32)

AUX5 Passthrough RC channel

Values:
  • 0: Unassigned
  • 1: Channel 1
  • 2: Channel 2
  • 3: Channel 3
  • 4: Channel 4
  • 5: Channel 5
  • 6: Channel 6
  • 7: Channel 7
  • 8: Channel 8
  • 9: Channel 9
  • 10: Channel 10
  • 11: Channel 11
  • 12: Channel 12
  • 13: Channel 13
  • 14: Channel 14
  • 15: Channel 15
  • 16: Channel 16
  • 17: Channel 17
  • 18: Channel 18

Module: modules/sensors

0 > 18 0
RC_MAP_FAILSAFE (INT32)

Failsafe channel mapping

Comment: The RC mapping index indicates which channel is used for failsafe If 0, whichever channel is mapped to throttle is used otherwise the value indicates the specific RC channel to use

Values:
  • 0: Unassigned
  • 1: Channel 1
  • 2: Channel 2
  • 3: Channel 3
  • 4: Channel 4
  • 5: Channel 5
  • 6: Channel 6
  • 7: Channel 7
  • 8: Channel 8
  • 9: Channel 9
  • 10: Channel 10
  • 11: Channel 11
  • 12: Channel 12
  • 13: Channel 13
  • 14: Channel 14
  • 15: Channel 15
  • 16: Channel 16
  • 17: Channel 17
  • 18: Channel 18

Module: modules/sensors

0 > 18 0
RC_MAP_PARAM1 (INT32)

PARAM1 tuning channel

Comment: Can be used for parameter tuning with the RC. This one is further referenced as the 1st parameter channel. Set to 0 to deactivate *

Values:
  • 0: Unassigned
  • 1: Channel 1
  • 2: Channel 2
  • 3: Channel 3
  • 4: Channel 4
  • 5: Channel 5
  • 6: Channel 6
  • 7: Channel 7
  • 8: Channel 8
  • 9: Channel 9
  • 10: Channel 10
  • 11: Channel 11
  • 12: Channel 12
  • 13: Channel 13
  • 14: Channel 14
  • 15: Channel 15
  • 16: Channel 16
  • 17: Channel 17
  • 18: Channel 18

Module: modules/sensors

0 > 18 0
RC_MAP_PARAM2 (INT32)

PARAM2 tuning channel

Comment: Can be used for parameter tuning with the RC. This one is further referenced as the 2nd parameter channel. Set to 0 to deactivate *

Values:
  • 0: Unassigned
  • 1: Channel 1
  • 2: Channel 2
  • 3: Channel 3
  • 4: Channel 4
  • 5: Channel 5
  • 6: Channel 6
  • 7: Channel 7
  • 8: Channel 8
  • 9: Channel 9
  • 10: Channel 10
  • 11: Channel 11
  • 12: Channel 12
  • 13: Channel 13
  • 14: Channel 14
  • 15: Channel 15
  • 16: Channel 16
  • 17: Channel 17
  • 18: Channel 18

Module: modules/sensors

0 > 18 0
RC_MAP_PARAM3 (INT32)

PARAM3 tuning channel

Comment: Can be used for parameter tuning with the RC. This one is further referenced as the 3th parameter channel. Set to 0 to deactivate *

Values:
  • 0: Unassigned
  • 1: Channel 1
  • 2: Channel 2
  • 3: Channel 3
  • 4: Channel 4
  • 5: Channel 5
  • 6: Channel 6
  • 7: Channel 7
  • 8: Channel 8
  • 9: Channel 9
  • 10: Channel 10
  • 11: Channel 11
  • 12: Channel 12
  • 13: Channel 13
  • 14: Channel 14
  • 15: Channel 15
  • 16: Channel 16
  • 17: Channel 17
  • 18: Channel 18

Module: modules/sensors

0 > 18 0
RC_MAP_PITCH (INT32)

Pitch control channel mapping

Comment: The channel index (starting from 1 for channel 1) indicates which channel should be used for reading pitch inputs from. A value of zero indicates the switch is not assigned.

Values:
  • 0: Unassigned
  • 1: Channel 1
  • 2: Channel 2
  • 3: Channel 3
  • 4: Channel 4
  • 5: Channel 5
  • 6: Channel 6
  • 7: Channel 7
  • 8: Channel 8
  • 9: Channel 9
  • 10: Channel 10
  • 11: Channel 11
  • 12: Channel 12
  • 13: Channel 13
  • 14: Channel 14
  • 15: Channel 15
  • 16: Channel 16
  • 17: Channel 17
  • 18: Channel 18

Module: modules/sensors

0 > 18 0
RC_MAP_ROLL (INT32)

Roll control channel mapping

Comment: The channel index (starting from 1 for channel 1) indicates which channel should be used for reading roll inputs from. A value of zero indicates the switch is not assigned.

Values:
  • 0: Unassigned
  • 1: Channel 1
  • 2: Channel 2
  • 3: Channel 3
  • 4: Channel 4
  • 5: Channel 5
  • 6: Channel 6
  • 7: Channel 7
  • 8: Channel 8
  • 9: Channel 9
  • 10: Channel 10
  • 11: Channel 11
  • 12: Channel 12
  • 13: Channel 13
  • 14: Channel 14
  • 15: Channel 15
  • 16: Channel 16
  • 17: Channel 17
  • 18: Channel 18

Module: modules/sensors

0 > 18 0
RC_MAP_THROTTLE (INT32)

Throttle control channel mapping

Comment: The channel index (starting from 1 for channel 1) indicates which channel should be used for reading throttle inputs from. A value of zero indicates the switch is not assigned.

Values:
  • 0: Unassigned
  • 1: Channel 1
  • 2: Channel 2
  • 3: Channel 3
  • 4: Channel 4
  • 5: Channel 5
  • 6: Channel 6
  • 7: Channel 7
  • 8: Channel 8
  • 9: Channel 9
  • 10: Channel 10
  • 11: Channel 11
  • 12: Channel 12
  • 13: Channel 13
  • 14: Channel 14
  • 15: Channel 15
  • 16: Channel 16
  • 17: Channel 17
  • 18: Channel 18

Module: modules/sensors

0 > 18 0
RC_MAP_YAW (INT32)

Yaw control channel mapping

Comment: The channel index (starting from 1 for channel 1) indicates which channel should be used for reading yaw inputs from. A value of zero indicates the switch is not assigned.

Values:
  • 0: Unassigned
  • 1: Channel 1
  • 2: Channel 2
  • 3: Channel 3
  • 4: Channel 4
  • 5: Channel 5
  • 6: Channel 6
  • 7: Channel 7
  • 8: Channel 8
  • 9: Channel 9
  • 10: Channel 10
  • 11: Channel 11
  • 12: Channel 12
  • 13: Channel 13
  • 14: Channel 14
  • 15: Channel 15
  • 16: Channel 16
  • 17: Channel 17
  • 18: Channel 18

Module: modules/sensors

0 > 18 0
RC_RSSI_PWM_CHAN (INT32)

PWM input channel that provides RSSI

Comment: 0: do not read RSSI from input channel 1-18: read RSSI from specified input channel Specify the range for RSSI input with RC_RSSI_PWM_MIN and RC_RSSI_PWM_MAX parameters.

Values:
  • 0: Unassigned
  • 1: Channel 1
  • 2: Channel 2
  • 3: Channel 3
  • 4: Channel 4
  • 5: Channel 5
  • 6: Channel 6
  • 7: Channel 7
  • 8: Channel 8
  • 9: Channel 9
  • 10: Channel 10
  • 11: Channel 11
  • 12: Channel 12
  • 13: Channel 13
  • 14: Channel 14
  • 15: Channel 15
  • 16: Channel 16
  • 17: Channel 17
  • 18: Channel 18

Module: drivers/px4io

0 > 18 0
RC_RSSI_PWM_MAX (INT32)

Max input value for RSSI reading

Comment: Only used if RC_RSSI_PWM_CHAN > 0

Module: drivers/px4io

0 > 2000 1000
RC_RSSI_PWM_MIN (INT32)

Min input value for RSSI reading

Comment: Only used if RC_RSSI_PWM_CHAN > 0

Module: drivers/px4io

0 > 2000 2000
TRIM_PITCH (FLOAT)

Pitch trim

Comment: The trim value is the actuator control value the system needs for straight and level flight. It can be calibrated by flying manually straight and level using the RC trims and copying them using the GCS.

Module: modules/commander

-0.25 > 0.25 (0.01) 0.0
TRIM_ROLL (FLOAT)

Roll trim

Comment: The trim value is the actuator control value the system needs for straight and level flight. It can be calibrated by flying manually straight and level using the RC trims and copying them using the GCS.

Module: modules/commander

-0.25 > 0.25 (0.01) 0.0
TRIM_YAW (FLOAT)

Yaw trim

Comment: The trim value is the actuator control value the system needs for straight and level flight. It can be calibrated by flying manually straight and level using the RC trims and copying them using the GCS.

Module: modules/commander

-0.25 > 0.25 (0.01) 0.0

Radio Switches

The module where these parameters are defined is: modules/sensors.

NameDescriptionMin > Max (Incr.)DefaultUnits
RC_ACRO_TH (FLOAT)

Threshold for selecting acro mode

Comment: 0-1 indicate where in the full channel range the threshold sits 0 : min 1 : max sign indicates polarity of comparison positive : true when channel>th negative : true when channel

-1 > 1 0.5
RC_ARMSWITCH_TH (FLOAT)

Threshold for the arm switch

Comment: 0-1 indicate where in the full channel range the threshold sits 0 : min 1 : max sign indicates polarity of comparison positive : true when channel>th negative : true when channel

-1 > 1 0.25
RC_ASSIST_TH (FLOAT)

Threshold for selecting assist mode

Comment: 0-1 indicate where in the full channel range the threshold sits 0 : min 1 : max sign indicates polarity of comparison positive : true when channel>th negative : true when channel

-1 > 1 0.25
RC_AUTO_TH (FLOAT)

Threshold for selecting auto mode

Comment: 0-1 indicate where in the full channel range the threshold sits 0 : min 1 : max sign indicates polarity of comparison positive : true when channel>th negative : true when channel

-1 > 1 0.75
RC_GEAR_TH (FLOAT)

Threshold for the landing gear switch

Comment: 0-1 indicate where in the full channel range the threshold sits 0 : min 1 : max sign indicates polarity of comparison positive : true when channel>th negative : true when channel

-1 > 1 0.25
RC_KILLSWITCH_TH (FLOAT)

Threshold for the kill switch

Comment: 0-1 indicate where in the full channel range the threshold sits 0 : min 1 : max sign indicates polarity of comparison positive : true when channel>th negative : true when channel

-1 > 1 0.25
RC_LOITER_TH (FLOAT)

Threshold for selecting loiter mode

Comment: 0-1 indicate where in the full channel range the threshold sits 0 : min 1 : max sign indicates polarity of comparison positive : true when channel>th negative : true when channel

-1 > 1 0.5
RC_MAN_TH (FLOAT)

Threshold for the manual switch

Comment: 0-1 indicate where in the full channel range the threshold sits 0 : min 1 : max sign indicates polarity of comparison positive : true when channel>th negative : true when channel

-1 > 1 0.5
RC_MAP_ACRO_SW (INT32)

Acro switch channel

Values:
  • 0: Unassigned
  • 1: Channel 1
  • 2: Channel 2
  • 3: Channel 3
  • 4: Channel 4
  • 5: Channel 5
  • 6: Channel 6
  • 7: Channel 7
  • 8: Channel 8
  • 9: Channel 9
  • 10: Channel 10
  • 11: Channel 11
  • 12: Channel 12
  • 13: Channel 13
  • 14: Channel 14
  • 15: Channel 15
  • 16: Channel 16
  • 17: Channel 17
  • 18: Channel 18
0 > 18 0
RC_MAP_ARM_SW (INT32)

Arm switch channel

Comment: Use it to arm/disarm via switch instead of default throttle stick. If this is assigned, arming and disarming via stick is disabled.

Values:
  • 0: Unassigned
  • 1: Channel 1
  • 2: Channel 2
  • 3: Channel 3
  • 4: Channel 4
  • 5: Channel 5
  • 6: Channel 6
  • 7: Channel 7
  • 8: Channel 8
  • 9: Channel 9
  • 10: Channel 10
  • 11: Channel 11
  • 12: Channel 12
  • 13: Channel 13
  • 14: Channel 14
  • 15: Channel 15
  • 16: Channel 16
  • 17: Channel 17
  • 18: Channel 18
0 > 18 0
RC_MAP_FLAPS (INT32)

Flaps channel

Values:
  • 0: Unassigned
  • 1: Channel 1
  • 2: Channel 2
  • 3: Channel 3
  • 4: Channel 4
  • 5: Channel 5
  • 6: Channel 6
  • 7: Channel 7
  • 8: Channel 8
  • 9: Channel 9
  • 10: Channel 10
  • 11: Channel 11
  • 12: Channel 12
  • 13: Channel 13
  • 14: Channel 14
  • 15: Channel 15
  • 16: Channel 16
  • 17: Channel 17
  • 18: Channel 18
0 > 18 0
RC_MAP_FLTMODE (INT32)

Single channel flight mode selection

Comment: If this parameter is non-zero, flight modes are only selected by this channel and are assigned to six slots.

Values:
  • 0: Unassigned
  • 1: Channel 1
  • 2: Channel 2
  • 3: Channel 3
  • 4: Channel 4
  • 5: Channel 5
  • 6: Channel 6
  • 7: Channel 7
  • 8: Channel 8
  • 9: Channel 9
  • 10: Channel 10
  • 11: Channel 11
  • 12: Channel 12
  • 13: Channel 13
  • 14: Channel 14
  • 15: Channel 15
  • 16: Channel 16
  • 17: Channel 17
  • 18: Channel 18
0 > 18 0
RC_MAP_GEAR_SW (INT32)

Landing gear switch channel

Values:
  • 0: Unassigned
  • 1: Channel 1
  • 2: Channel 2
  • 3: Channel 3
  • 4: Channel 4
  • 5: Channel 5
  • 6: Channel 6
  • 7: Channel 7
  • 8: Channel 8
  • 9: Channel 9
  • 10: Channel 10
  • 11: Channel 11
  • 12: Channel 12
  • 13: Channel 13
  • 14: Channel 14
  • 15: Channel 15
  • 16: Channel 16
  • 17: Channel 17
  • 18: Channel 18
0 > 18 0
RC_MAP_KILL_SW (INT32)

Kill switch channel

Values:
  • 0: Unassigned
  • 1: Channel 1
  • 2: Channel 2
  • 3: Channel 3
  • 4: Channel 4
  • 5: Channel 5
  • 6: Channel 6
  • 7: Channel 7
  • 8: Channel 8
  • 9: Channel 9
  • 10: Channel 10
  • 11: Channel 11
  • 12: Channel 12
  • 13: Channel 13
  • 14: Channel 14
  • 15: Channel 15
  • 16: Channel 16
  • 17: Channel 17
  • 18: Channel 18
0 > 18 0
RC_MAP_LOITER_SW (INT32)

Loiter switch channel

Values:
  • 0: Unassigned
  • 1: Channel 1
  • 2: Channel 2
  • 3: Channel 3
  • 4: Channel 4
  • 5: Channel 5
  • 6: Channel 6
  • 7: Channel 7
  • 8: Channel 8
  • 9: Channel 9
  • 10: Channel 10
  • 11: Channel 11
  • 12: Channel 12
  • 13: Channel 13
  • 14: Channel 14
  • 15: Channel 15
  • 16: Channel 16
  • 17: Channel 17
  • 18: Channel 18
0 > 18 0
RC_MAP_MAN_SW (INT32)

Manual switch channel mapping

Values:
  • 0: Unassigned
  • 1: Channel 1
  • 2: Channel 2
  • 3: Channel 3
  • 4: Channel 4
  • 5: Channel 5
  • 6: Channel 6
  • 7: Channel 7
  • 8: Channel 8
  • 9: Channel 9
  • 10: Channel 10
  • 11: Channel 11
  • 12: Channel 12
  • 13: Channel 13
  • 14: Channel 14
  • 15: Channel 15
  • 16: Channel 16
  • 17: Channel 17
  • 18: Channel 18
0 > 18 0
RC_MAP_MODE_SW (INT32)

Mode switch channel mapping

Comment: This is the main flight mode selector. The channel index (starting from 1 for channel 1) indicates which channel should be used for deciding about the main mode. A value of zero indicates the switch is not assigned.

Values:
  • 0: Unassigned
  • 1: Channel 1
  • 2: Channel 2
  • 3: Channel 3
  • 4: Channel 4
  • 5: Channel 5
  • 6: Channel 6
  • 7: Channel 7
  • 8: Channel 8
  • 9: Channel 9
  • 10: Channel 10
  • 11: Channel 11
  • 12: Channel 12
  • 13: Channel 13
  • 14: Channel 14
  • 15: Channel 15
  • 16: Channel 16
  • 17: Channel 17
  • 18: Channel 18
0 > 18 0
RC_MAP_OFFB_SW (INT32)

Offboard switch channel

Values:
  • 0: Unassigned
  • 1: Channel 1
  • 2: Channel 2
  • 3: Channel 3
  • 4: Channel 4
  • 5: Channel 5
  • 6: Channel 6
  • 7: Channel 7
  • 8: Channel 8
  • 9: Channel 9
  • 10: Channel 10
  • 11: Channel 11
  • 12: Channel 12
  • 13: Channel 13
  • 14: Channel 14
  • 15: Channel 15
  • 16: Channel 16
  • 17: Channel 17
  • 18: Channel 18
0 > 18 0
RC_MAP_POSCTL_SW (INT32)

Position Control switch channel

Values:
  • 0: Unassigned
  • 1: Channel 1
  • 2: Channel 2
  • 3: Channel 3
  • 4: Channel 4
  • 5: Channel 5
  • 6: Channel 6
  • 7: Channel 7
  • 8: Channel 8
  • 9: Channel 9
  • 10: Channel 10
  • 11: Channel 11
  • 12: Channel 12
  • 13: Channel 13
  • 14: Channel 14
  • 15: Channel 15
  • 16: Channel 16
  • 17: Channel 17
  • 18: Channel 18
0 > 18 0
RC_MAP_RATT_SW (INT32)

Rattitude switch channel

Values:
  • 0: Unassigned
  • 1: Channel 1
  • 2: Channel 2
  • 3: Channel 3
  • 4: Channel 4
  • 5: Channel 5
  • 6: Channel 6
  • 7: Channel 7
  • 8: Channel 8
  • 9: Channel 9
  • 10: Channel 10
  • 11: Channel 11
  • 12: Channel 12
  • 13: Channel 13
  • 14: Channel 14
  • 15: Channel 15
  • 16: Channel 16
  • 17: Channel 17
  • 18: Channel 18
0 > 18 0
RC_MAP_RETURN_SW (INT32)

Return switch channel

Values:
  • 0: Unassigned
  • 1: Channel 1
  • 2: Channel 2
  • 3: Channel 3
  • 4: Channel 4
  • 5: Channel 5
  • 6: Channel 6
  • 7: Channel 7
  • 8: Channel 8
  • 9: Channel 9
  • 10: Channel 10
  • 11: Channel 11
  • 12: Channel 12
  • 13: Channel 13
  • 14: Channel 14
  • 15: Channel 15
  • 16: Channel 16
  • 17: Channel 17
  • 18: Channel 18
0 > 18 0
RC_MAP_STAB_SW (INT32)

Stabilize switch channel mapping

Values:
  • 0: Unassigned
  • 1: Channel 1
  • 2: Channel 2
  • 3: Channel 3
  • 4: Channel 4
  • 5: Channel 5
  • 6: Channel 6
  • 7: Channel 7
  • 8: Channel 8
  • 9: Channel 9
  • 10: Channel 10
  • 11: Channel 11
  • 12: Channel 12
  • 13: Channel 13
  • 14: Channel 14
  • 15: Channel 15
  • 16: Channel 16
  • 17: Channel 17
  • 18: Channel 18
0 > 18 0
RC_MAP_TRANS_SW (INT32)

VTOL transition switch channel mapping

Values:
  • 0: Unassigned
  • 1: Channel 1
  • 2: Channel 2
  • 3: Channel 3
  • 4: Channel 4
  • 5: Channel 5
  • 6: Channel 6
  • 7: Channel 7
  • 8: Channel 8
  • 9: Channel 9
  • 10: Channel 10
  • 11: Channel 11
  • 12: Channel 12
  • 13: Channel 13
  • 14: Channel 14
  • 15: Channel 15
  • 16: Channel 16
  • 17: Channel 17
  • 18: Channel 18
0 > 18 0
RC_OFFB_TH (FLOAT)

Threshold for selecting offboard mode

Comment: 0-1 indicate where in the full channel range the threshold sits 0 : min 1 : max sign indicates polarity of comparison positive : true when channel>th negative : true when channel

-1 > 1 0.5
RC_POSCTL_TH (FLOAT)

Threshold for selecting posctl mode

Comment: 0-1 indicate where in the full channel range the threshold sits 0 : min 1 : max sign indicates polarity of comparison positive : true when channel>th negative : true when channel

-1 > 1 0.5
RC_RATT_TH (FLOAT)

Threshold for selecting rattitude mode

Comment: 0-1 indicate where in the full channel range the threshold sits 0 : min 1 : max sign indicates polarity of comparison positive : true when channel>th negative : true when channel

-1 > 1 0.5
RC_RETURN_TH (FLOAT)

Threshold for selecting return to launch mode

Comment: 0-1 indicate where in the full channel range the threshold sits 0 : min 1 : max sign indicates polarity of comparison positive : true when channel>th negative : true when channel

-1 > 1 0.5
RC_STAB_TH (FLOAT)

Threshold for the stabilize switch

Comment: 0-1 indicate where in the full channel range the threshold sits 0 : min 1 : max sign indicates polarity of comparison positive : true when channel>th negative : true when channel

-1 > 1 0.5
RC_TRANS_TH (FLOAT)

Threshold for the VTOL transition switch

Comment: 0-1 indicate where in the full channel range the threshold sits 0 : min 1 : max sign indicates polarity of comparison positive : true when channel>th negative : true when channel

-1 > 1 0.25

Return Mode

The module where these parameters are defined is: modules/navigator.

NameDescriptionMin > Max (Incr.)DefaultUnits
RTL_DESCEND_ALT (FLOAT)

Return mode loiter altitude

Comment: Stay at this altitude above home position after RTL descending. Land (i.e. slowly descend) from this altitude if autolanding allowed.

2 > 100 (0.5) 30 m
RTL_LAND_DELAY (FLOAT)

Return mode delay

Comment: Delay after descend before landing in Return mode. If set to -1 the system will not land but loiter at RTL_DESCEND_ALT.

-1 > 300 (0.5) -1.0 s
RTL_MIN_DIST (FLOAT)

Minimum distance to trigger rising to a safe altitude

Comment: If the system is horizontally closer than this distance to home it will land straight on home instead of raising to the return altitude first.

0.5 > 20 (0.5) 5.0 m
RTL_RETURN_ALT (FLOAT)

RTL altitude

Comment: Altitude to fly back in RTL in meters

0 > 150 (0.5) 60 m

Return To Land

The module where these parameters are defined is: modules/navigator.

NameDescriptionMin > Max (Incr.)DefaultUnits
RTL_TYPE (INT32)

Return type

Comment: Fly straight to the home location or planned mission landing and land there or use the planned mission to get to those points.

Values:
  • 0: Return home via direct path
  • 1: Return to a planned mission landing, if available, via direct path, else return to home via direct path
  • 2: Return to a planned mission landing, if available, using the mission path, else return to home via the reverse mission path
0

Runway Takeoff

The module where these parameters are defined is: modules/fw_pos_control_l1/runway_takeoff.

NameDescriptionMin > Max (Incr.)DefaultUnits
RWTO_AIRSPD_SCL (FLOAT)

Min. airspeed scaling factor for takeoff. Pitch up will be commanded when the following airspeed is reached: FW_AIRSPD_MIN * RWTO_AIRSPD_SCL

0.0 > 2.0 (0.01) 1.3 norm
RWTO_HDG (INT32)

Specifies which heading should be held during runnway takeoff

Comment: 0: airframe heading, 1: heading towards takeoff waypoint

Values:
  • 0: Airframe
  • 1: Waypoint
0 > 1 0
RWTO_MAX_PITCH (FLOAT)

Max pitch during takeoff. Fixed-wing settings are used if set to 0. Note that there is also a minimum pitch of 10 degrees during takeoff, so this must be larger if set

0.0 > 60.0 (0.5) 20.0 deg
RWTO_MAX_ROLL (FLOAT)

Max roll during climbout. Roll is limited during climbout to ensure enough lift and prevents aggressive navigation before we're on a safe height

0.0 > 60.0 (0.5) 25.0 deg
RWTO_MAX_THR (FLOAT)

Max throttle during runway takeoff. (Can be used to test taxi on runway)

0.0 > 1.0 (0.01) 1.0 norm
RWTO_NAV_ALT (FLOAT)

Altitude AGL at which we have enough ground clearance to allow some roll. Until RWTO_NAV_ALT is reached the plane is held level and only rudder is used to keep the heading (see RWTO_HDG). This should be below FW_CLMBOUT_DIFF if FW_CLMBOUT_DIFF > 0

0.0 > 100.0 (1) 5.0 m
RWTO_PSP (FLOAT)

Pitch setpoint during taxi / before takeoff airspeed is reached. A taildragger with stearable wheel might need to pitch up a little to keep it's wheel on the ground before airspeed to takeoff is reached

0.0 > 20.0 (0.5) 0.0 deg
RWTO_TKOFF (INT32)

Runway takeoff with landing gear

0

SD Logging

NameDescriptionMin > Max (Incr.)DefaultUnits
SDLOG_DIRS_MAX (INT32)

Maximum number of log directories to keep

Comment: If there are more log directories than this value, the system will delete the oldest directories during startup. In addition, the system will delete old logs if there is not enough free space left. The minimum amount is 300 MB. If this is set to 0, old directories will only be removed if the free space falls below the minimum.

Reboot required: true

Module: modules/logger

0 > 1000 0
SDLOG_EXT (INT32)

Extended logging mode

Comment: A value of -1 indicates the command line argument should be obeyed. A value of 0 disables extended logging mode, a value of 1 enables it. This parameter is only read out before logging starts (which commonly is before arming).

Values:
  • -1: Command Line
  • 0: Disable
  • 1: Enable

Module: modules/sdlog2

-1 > 1 -1
SDLOG_GPSTIME (INT32)

Use timestamps only if GPS 3D fix is available

Comment: Constrain the log folder creation to only use the time stamp if a 3D GPS lock is present.

Module: modules/sdlog2

1
SDLOG_MODE (INT32)

Logging Mode

Comment: Determines when to start and stop logging. By default, logging is started when arming the system, and stopped when disarming. This parameter is only for the new logger (SYS_LOGGER=1).

Values:
  • 0: when armed until disarm (default)
  • 1: from boot until disarm
  • 2: from boot until shutdown

Reboot required: true

Module: modules/logger

0 > 2 0
SDLOG_PRIO_BOOST (INT32)

Give logging app higher thread priority to avoid data loss. This is used for gathering replay logs for the ekf2 module

Comment: A value of 0 indicates that the default priority is used. Increasing the parameter in steps of one increases the priority.

Values:
  • 0: Low priority
  • 1: Default priority
  • 2: Medium priority
  • 3: Max priority

Module: modules/sdlog2

0 > 3 2
SDLOG_PROFILE (INT32)

Logging Topic Profile

Comment: This is an integer bitmask controlling the set and rates of logged topics. The default allows for general log analysis and estimator replay, while keeping the log file size reasonably small. Enabling multiple sets leads to higher bandwidth requirements and larger log files. Set bits in the following positions to enable: 0 : Set to true to use the default set (used for general log analysis) 1 : Set to true to enable full rate estimator (EKF2) replay topics 2 : Set to true to enable topics for thermal calibration (high rate raw IMU and Baro sensor data) 3 : Set to true to enable topics for system identification (high rate actuator control and IMU data) 4 : Set to true to enable full rates for analysis of fast maneuvers (RC, attitude, rates and actuators) 5 : Set to true to enable debugging topics (debug_*.msg topics, for custom code) 6 : Set to true to enable topics for sensor comparison (low rate raw IMU, Baro and Magnetomer data)

Bitmask:
  • 0: default set (log analysis)
  • 1: estimator replay (EKF2)
  • 2: thermal calibration
  • 3: system identification
  • 4: high rate
  • 5: debug
  • 6: sensor comparison

Reboot required: true

Module: modules/logger

0 > 127 3
SDLOG_RATE (INT32)

Logging rate

Comment: A value of -1 indicates the commandline argument should be obeyed. A value of 0 sets the minimum rate, any other value is interpreted as rate in Hertz. This parameter is only read out before logging starts (which commonly is before arming).

Module: modules/sdlog2

-1 > 250 -1 Hz
SDLOG_UTC_OFFSET (INT32)

UTC offset (unit: min)

Comment: the difference in hours and minutes from Coordinated Universal Time (UTC) for a your place and date. for example, In case of South Korea(UTC+09:00), UTC offset is 540 min (9*60) refer to https://en.wikipedia.org/wiki/List_of_UTC_time_offsets

Module: modules/logger

-1000 > 1000 0 min
SDLOG_UUID (INT32)

Log UUID

Comment: If set to 1, add an ID to the log, which uniquely identifies the vehicle

Module: modules/logger

1

SITL

The module where these parameters are defined is: modules/simulator.

NameDescriptionMin > Max (Incr.)DefaultUnits
SIM_BAT_DRAIN (FLOAT)

Simulator Battery drain interval

1 > 86400 (1) 60 s
SITL_UDP_PRT (INT32)

Simulator UDP port

14560

Sensor Calibration

The module where these parameters are defined is: modules/sensors.

NameDescriptionMin > Max (Incr.)DefaultUnits
CAL_ACC0_EN (INT32)

Accelerometer 0 enabled

1
CAL_ACC0_ID (INT32)

ID of the Accelerometer that the calibration is for

0
CAL_ACC0_XOFF (FLOAT)

Accelerometer X-axis offset

0.0
CAL_ACC0_XSCALE (FLOAT)

Accelerometer X-axis scaling factor

1.0
CAL_ACC0_YOFF (FLOAT)

Accelerometer Y-axis offset

0.0
CAL_ACC0_YSCALE (FLOAT)

Accelerometer Y-axis scaling factor

1.0
CAL_ACC0_ZOFF (FLOAT)

Accelerometer Z-axis offset

0.0
CAL_ACC0_ZSCALE (FLOAT)

Accelerometer Z-axis scaling factor

1.0
CAL_ACC1_EN (INT32)

Accelerometer 1 enabled

1
CAL_ACC1_ID (INT32)

ID of the Accelerometer that the calibration is for

0
CAL_ACC1_XOFF (FLOAT)

Accelerometer X-axis offset

0.0
CAL_ACC1_XSCALE (FLOAT)

Accelerometer X-axis scaling factor

1.0
CAL_ACC1_YOFF (FLOAT)

Accelerometer Y-axis offset

0.0
CAL_ACC1_YSCALE (FLOAT)

Accelerometer Y-axis scaling factor

1.0
CAL_ACC1_ZOFF (FLOAT)

Accelerometer Z-axis offset

0.0
CAL_ACC1_ZSCALE (FLOAT)

Accelerometer Z-axis scaling factor

1.0
CAL_ACC2_EN (INT32)

Accelerometer 2 enabled

1
CAL_ACC2_ID (INT32)

ID of the Accelerometer that the calibration is for

0
CAL_ACC2_XOFF (FLOAT)

Accelerometer X-axis offset

0.0
CAL_ACC2_XSCALE (FLOAT)

Accelerometer X-axis scaling factor

1.0
CAL_ACC2_YOFF (FLOAT)

Accelerometer Y-axis offset

0.0
CAL_ACC2_YSCALE (FLOAT)

Accelerometer Y-axis scaling factor

1.0
CAL_ACC2_ZOFF (FLOAT)

Accelerometer Z-axis offset

0.0
CAL_ACC2_ZSCALE (FLOAT)

Accelerometer Z-axis scaling factor

1.0
CAL_ACC_PRIME (INT32)

Primary accel ID

0
CAL_AIR_CMODEL (INT32)

Airspeed sensor compensation model for the SDP3x

Comment: Model with Pitot CAL_AIR_TUBED_MM: Not used, 1.5 mm tubes assumed. CAL_AIR_TUBELEN: Length of the tubes connecting the pitot to the sensor. Model without Pitot (1.5 mm tubes) CAL_AIR_TUBED_MM: Not used, 1.5 mm tubes assumed. CAL_AIR_TUBELEN: Length of the tubes connecting the pitot to the sensor. Tube Pressure Drop CAL_AIR_TUBED_MM: Diameter in mm of the pitot and tubes, must have the same diameter. CAL_AIR_TUBELEN: Length of the tubes connecting the pitot to the sensor and the static + dynamic port length of the pitot.

Values:
  • 0: Model with Pitot
  • 1: Model without Pitot (1.5 mm tubes)
  • 2: Tube Pressure Drop
0
CAL_AIR_TUBED_MM (FLOAT)

Airspeed sensor tube diameter. Only used for the Tube Pressure Drop Compensation

0.1 > 100 1.5 millimeter
CAL_AIR_TUBELEN (FLOAT)

Airspeed sensor tube length

Comment: See the CAL_AIR_CMODEL explanation on how this parameter should be set.

0.01 > 2.00 0.2 meter
CAL_BARO_PRIME (INT32)

Primary baro ID

0
CAL_GYRO0_EN (INT32)

Gyro 0 enabled

1
CAL_GYRO0_ID (INT32)

ID of the Gyro that the calibration is for

0
CAL_GYRO0_XOFF (FLOAT)

Gyro X-axis offset

0.0
CAL_GYRO0_XSCALE (FLOAT)

Gyro X-axis scaling factor

1.0
CAL_GYRO0_YOFF (FLOAT)

Gyro Y-axis offset

0.0
CAL_GYRO0_YSCALE (FLOAT)

Gyro Y-axis scaling factor

1.0
CAL_GYRO0_ZOFF (FLOAT)

Gyro Z-axis offset

0.0
CAL_GYRO0_ZSCALE (FLOAT)

Gyro Z-axis scaling factor

1.0
CAL_GYRO1_EN (INT32)

Gyro 1 enabled

1
CAL_GYRO1_ID (INT32)

ID of the Gyro that the calibration is for

0
CAL_GYRO1_XOFF (FLOAT)

Gyro X-axis offset

0.0
CAL_GYRO1_XSCALE (FLOAT)

Gyro X-axis scaling factor

1.0
CAL_GYRO1_YOFF (FLOAT)

Gyro Y-axis offset

0.0
CAL_GYRO1_YSCALE (FLOAT)

Gyro Y-axis scaling factor

1.0
CAL_GYRO1_ZOFF (FLOAT)

Gyro Z-axis offset

0.0
CAL_GYRO1_ZSCALE (FLOAT)

Gyro Z-axis scaling factor

1.0
CAL_GYRO2_EN (INT32)

Gyro 2 enabled

1
CAL_GYRO2_ID (INT32)

ID of the Gyro that the calibration is for

0
CAL_GYRO2_XOFF (FLOAT)

Gyro X-axis offset

0.0
CAL_GYRO2_XSCALE (FLOAT)

Gyro X-axis scaling factor

1.0
CAL_GYRO2_YOFF (FLOAT)

Gyro Y-axis offset

0.0
CAL_GYRO2_YSCALE (FLOAT)

Gyro Y-axis scaling factor

1.0
CAL_GYRO2_ZOFF (FLOAT)

Gyro Z-axis offset

0.0
CAL_GYRO2_ZSCALE (FLOAT)

Gyro Z-axis scaling factor

1.0
CAL_GYRO_PRIME (INT32)

Primary gyro ID

0
CAL_MAG0_EN (INT32)

Mag 0 enabled

1
CAL_MAG0_ID (INT32)

ID of Magnetometer the calibration is for

0
CAL_MAG0_ROT (INT32)

Rotation of magnetometer 0 relative to airframe

Comment: An internal magnetometer will force a value of -1, so a GCS should only attempt to configure the rotation if the value is greater than or equal to zero.

Values:
  • -1: Internal mag
  • 0: No rotation
  • 1: Yaw 45°
  • 2: Yaw 90°
  • 3: Yaw 135°
  • 4: Yaw 180°
  • 5: Yaw 225°
  • 6: Yaw 270°
  • 7: Yaw 315°
  • 8: Roll 180°
  • 9: Roll 180°, Yaw 45°
  • 10: Roll 180°, Yaw 90°
  • 11: Roll 180°, Yaw 135°
  • 12: Pitch 180°
  • 13: Roll 180°, Yaw 225°
  • 14: Roll 180°, Yaw 270°
  • 15: Roll 180°, Yaw 315°
  • 16: Roll 90°
  • 17: Roll 90°, Yaw 45°
  • 18: Roll 90°, Yaw 90°
  • 19: Roll 90°, Yaw 135°
  • 20: Roll 270°
  • 21: Roll 270°, Yaw 45°
  • 22: Roll 270°, Yaw 90°
  • 23: Roll 270°, Yaw 135°
  • 24: Pitch 90°
  • 25: Pitch 270°

Reboot required: true

-1 > 30 -1
CAL_MAG0_XOFF (FLOAT)

Magnetometer X-axis offset

0.0
CAL_MAG0_XSCALE (FLOAT)

Magnetometer X-axis scaling factor

1.0
CAL_MAG0_YOFF (FLOAT)

Magnetometer Y-axis offset

0.0
CAL_MAG0_YSCALE (FLOAT)

Magnetometer Y-axis scaling factor

1.0
CAL_MAG0_ZOFF (FLOAT)

Magnetometer Z-axis offset

0.0
CAL_MAG0_ZSCALE (FLOAT)

Magnetometer Z-axis scaling factor

1.0
CAL_MAG1_EN (INT32)

Mag 1 enabled

1
CAL_MAG1_ID (INT32)

ID of Magnetometer the calibration is for

0
CAL_MAG1_ROT (INT32)

Rotation of magnetometer 1 relative to airframe

Comment: An internal magnetometer will force a value of -1, so a GCS should only attempt to configure the rotation if the value is greater than or equal to zero.

Values:
  • -1: Internal mag
  • 0: No rotation
  • 1: Yaw 45°
  • 2: Yaw 90°
  • 3: Yaw 135°
  • 4: Yaw 180°
  • 5: Yaw 225°
  • 6: Yaw 270°
  • 7: Yaw 315°
  • 8: Roll 180°
  • 9: Roll 180°, Yaw 45°
  • 10: Roll 180°, Yaw 90°
  • 11: Roll 180°, Yaw 135°
  • 12: Pitch 180°
  • 13: Roll 180°, Yaw 225°
  • 14: Roll 180°, Yaw 270°
  • 15: Roll 180°, Yaw 315°
  • 16: Roll 90°
  • 17: Roll 90°, Yaw 45°
  • 18: Roll 90°, Yaw 90°
  • 19: Roll 90°, Yaw 135°
  • 20: Roll 270°
  • 21: Roll 270°, Yaw 45°
  • 22: Roll 270°, Yaw 90°
  • 23: Roll 270°, Yaw 135°
  • 24: Pitch 90°
  • 25: Pitch 270°

Reboot required: true

-1 > 30 -1
CAL_MAG1_XOFF (FLOAT)

Magnetometer X-axis offset

0.0
CAL_MAG1_XSCALE (FLOAT)

Magnetometer X-axis scaling factor

1.0
CAL_MAG1_YOFF (FLOAT)

Magnetometer Y-axis offset

0.0
CAL_MAG1_YSCALE (FLOAT)

Magnetometer Y-axis scaling factor

1.0
CAL_MAG1_ZOFF (FLOAT)

Magnetometer Z-axis offset

0.0
CAL_MAG1_ZSCALE (FLOAT)

Magnetometer Z-axis scaling factor

1.0
CAL_MAG2_EN (INT32)

Mag 2 enabled

1
CAL_MAG2_ID (INT32)

ID of Magnetometer the calibration is for

0
CAL_MAG2_ROT (INT32)

Rotation of magnetometer 2 relative to airframe

Comment: An internal magnetometer will force a value of -1, so a GCS should only attempt to configure the rotation if the value is greater than or equal to zero.

Values:
  • -1: Internal mag
  • 0: No rotation
  • 1: Yaw 45°
  • 2: Yaw 90°
  • 3: Yaw 135°
  • 4: Yaw 180°
  • 5: Yaw 225°
  • 6: Yaw 270°
  • 7: Yaw 315°
  • 8: Roll 180°
  • 9: Roll 180°, Yaw 45°
  • 10: Roll 180°, Yaw 90°
  • 11: Roll 180°, Yaw 135°
  • 12: Pitch 180°
  • 13: Roll 180°, Yaw 225°
  • 14: Roll 180°, Yaw 270°
  • 15: Roll 180°, Yaw 315°
  • 16: Roll 90°
  • 17: Roll 90°, Yaw 45°
  • 18: Roll 90°, Yaw 90°
  • 19: Roll 90°, Yaw 135°
  • 20: Roll 270°
  • 21: Roll 270°, Yaw 45°
  • 22: Roll 270°, Yaw 90°
  • 23: Roll 270°, Yaw 135°
  • 24: Pitch 90°
  • 25: Pitch 270°

Reboot required: true

-1 > 30 -1
CAL_MAG2_XOFF (FLOAT)

Magnetometer X-axis offset

0.0
CAL_MAG2_XSCALE (FLOAT)

Magnetometer X-axis scaling factor

1.0
CAL_MAG2_YOFF (FLOAT)

Magnetometer Y-axis offset

0.0
CAL_MAG2_YSCALE (FLOAT)

Magnetometer Y-axis scaling factor

1.0
CAL_MAG2_ZOFF (FLOAT)

Magnetometer Z-axis offset

0.0
CAL_MAG2_ZSCALE (FLOAT)

Magnetometer Z-axis scaling factor

1.0
CAL_MAG3_EN (INT32)

Mag 3 enabled

1
CAL_MAG3_ID (INT32)

ID of Magnetometer the calibration is for

0
CAL_MAG3_ROT (INT32)

Rotation of magnetometer 2 relative to airframe

Comment: An internal magnetometer will force a value of -1, so a GCS should only attempt to configure the rotation if the value is greater than or equal to zero.

Values:
  • -1: Internal mag
  • 0: No rotation
  • 1: Yaw 45°
  • 2: Yaw 90°
  • 3: Yaw 135°
  • 4: Yaw 180°
  • 5: Yaw 225°
  • 6: Yaw 270°
  • 7: Yaw 315°
  • 8: Roll 180°
  • 9: Roll 180°, Yaw 45°
  • 10: Roll 180°, Yaw 90°
  • 11: Roll 180°, Yaw 135°
  • 12: Pitch 180°
  • 13: Roll 180°, Yaw 225°
  • 14: Roll 180°, Yaw 270°
  • 15: Roll 180°, Yaw 315°
  • 16: Roll 90°
  • 17: Roll 90°, Yaw 45°
  • 18: Roll 90°, Yaw 90°
  • 19: Roll 90°, Yaw 135°
  • 20: Roll 270°
  • 21: Roll 270°, Yaw 45°
  • 22: Roll 270°, Yaw 90°
  • 23: Roll 270°, Yaw 135°
  • 24: Pitch 90°
  • 25: Pitch 270°

Reboot required: true

-1 > 30 -1
CAL_MAG3_XOFF (FLOAT)

Magnetometer X-axis offset

0.0
CAL_MAG3_XSCALE (FLOAT)

Magnetometer X-axis scaling factor

1.0
CAL_MAG3_YOFF (FLOAT)

Magnetometer Y-axis offset

0.0
CAL_MAG3_YSCALE (FLOAT)

Magnetometer Y-axis scaling factor

1.0
CAL_MAG3_ZOFF (FLOAT)

Magnetometer Z-axis offset

0.0
CAL_MAG3_ZSCALE (FLOAT)

Magnetometer Z-axis scaling factor

1.0
CAL_MAG_PRIME (INT32)

Primary mag ID

0
SENS_DPRES_ANSC (FLOAT)

Differential pressure sensor analog scaling

Comment: Pick the appropriate scaling from the datasheet. this number defines the (linear) conversion from voltage to Pascal (pa). For the MPXV7002DP this is 1000. NOTE: If the sensor always registers zero, try switching the static and dynamic tubes.

0
SENS_DPRES_OFF (FLOAT)

Differential pressure sensor offset

Comment: The offset (zero-reading) in Pascal

0.0
SENS_FLOW_MAXHGT (FLOAT)

Maximum height above ground when reliant on optical flow

Comment: This parameter defines the maximum distance from ground at which the optical flow sensor operates reliably. The height setpoint will be limited to be no greater than this value when the navigation system is completely reliant on optical flow data and the height above ground estimate is valid. The sensor may be usable above this height, but accuracy will progressively degrade.

1.0 > 25.0 (0.1) 3.0 m
SENS_FLOW_MAXR (FLOAT)

Magnitude of maximum angular flow rate reliably measurable by the optical flow sensor. Optical flow data will not fused by the estimators if the magnitude of the flow rate exceeds this value and control loops will be instructed to limit ground speed such that the flow rate produced by movement over ground is less than 50% of this value

1.0 > ? 2.5 rad/s
SENS_FLOW_MINHGT (FLOAT)

Minimum height above ground when reliant on optical flow

Comment: This parameter defines the minimum distance from ground at which the optical flow sensor operates reliably. The sensor may be usable below this height, but accuracy will progressively reduce to loss of focus.

0.0 > 1.0 (0.1) 0.7 m

Sensors

NameDescriptionMin > Max (Incr.)DefaultUnits
CAL_MAG_SIDES (INT32)

Bitfield selecting mag sides for calibration

Comment: DETECT_ORIENTATION_TAIL_DOWN = 1 DETECT_ORIENTATION_NOSE_DOWN = 2 DETECT_ORIENTATION_LEFT = 4 DETECT_ORIENTATION_RIGHT = 8 DETECT_ORIENTATION_UPSIDE_DOWN = 16 DETECT_ORIENTATION_RIGHTSIDE_UP = 32

Values:
  • 34: Two side calibration
  • 38: Three side calibration
  • 63: Six side calibration

Module: modules/sensors

34 > 63 63
IMU_ACCEL_CUTOFF (FLOAT)

Driver level cutoff frequency for accel

Comment: The cutoff frequency for the 2nd order butterworth filter on the accel driver. This features is currently supported by the mpu6000 and mpu9250. This only affects the signal sent to the controllers, not the estimators. 0 disables the filter.

Reboot required: true

Module: modules/sensors

0 > 1000 30.0 Hz
IMU_GYRO_CUTOFF (FLOAT)

Driver level cutoff frequency for gyro

Comment: The cutoff frequency for the 2nd order butterworth filter on the gyro driver. This features is currently supported by the mpu6000 and mpu9250. This only affects the signal sent to the controllers, not the estimators. 0 disables the filter.

Reboot required: true

Module: modules/sensors

0 > 1000 80.0 Hz
SENS_BARO_QNH (FLOAT)

QNH for barometer

Module: modules/sensors

500 > 1500 1013.25 hPa
SENS_BOARD_ROT (INT32)

Board rotation

Comment: This parameter defines the rotation of the FMU board relative to the platform.

Values:
  • 0: No rotation
  • 1: Yaw 45°
  • 2: Yaw 90°
  • 3: Yaw 135°
  • 4: Yaw 180°
  • 5: Yaw 225°
  • 6: Yaw 270°
  • 7: Yaw 315°
  • 8: Roll 180°
  • 9: Roll 180°, Yaw 45°
  • 10: Roll 180°, Yaw 90°
  • 11: Roll 180°, Yaw 135°
  • 12: Pitch 180°
  • 13: Roll 180°, Yaw 225°
  • 14: Roll 180°, Yaw 270°
  • 15: Roll 180°, Yaw 315°
  • 16: Roll 90°
  • 17: Roll 90°, Yaw 45°
  • 18: Roll 90°, Yaw 90°
  • 19: Roll 90°, Yaw 135°
  • 20: Roll 270°
  • 21: Roll 270°, Yaw 45°
  • 22: Roll 270°, Yaw 90°
  • 23: Roll 270°, Yaw 135°
  • 24: Pitch 90°
  • 25: Pitch 270°
  • 26: Roll 270°, Yaw 270°
  • 27: Roll 180°, Pitch 270°
  • 28: Pitch 90°, Yaw 180
  • 29: Pitch 90°, Roll 90°
  • 30: Yaw 293°, Pitch 68°, Roll 90° (Solo)
  • 31: Pitch 90°, Roll 270°
  • 32: Pitch 9°, Yaw 180°
  • 33: Pitch 45°
  • 34: Pitch 315°

Reboot required: true

Module: modules/sensors

0
SENS_BOARD_X_OFF (FLOAT)

Board rotation X (Roll) offset

Comment: This parameter defines a rotational offset in degrees around the X (Roll) axis It allows the user to fine tune the board offset in the event of misalignment.

Module: modules/sensors

0.0 deg
SENS_BOARD_Y_OFF (FLOAT)

Board rotation Y (Pitch) offset

Comment: This parameter defines a rotational offset in degrees around the Y (Pitch) axis. It allows the user to fine tune the board offset in the event of misalignment.

Module: modules/sensors

0.0 deg
SENS_BOARD_Z_OFF (FLOAT)

Board rotation Z (YAW) offset

Comment: This parameter defines a rotational offset in degrees around the Z (Yaw) axis. It allows the user to fine tune the board offset in the event of misalignment.

Module: modules/sensors

0.0 deg
SENS_EN_LEDDAR1 (INT32)

LeddarOne rangefinder

Reboot required: true

Module: drivers/distance_sensor/leddar_one

0
SENS_EN_LL40LS (INT32)

Lidar-Lite (LL40LS)

Values:
  • 0: Disabled
  • 1: PWM
  • 2: I2C

Reboot required: true

Module: drivers/distance_sensor/ll40ls

0 > 2 0
SENS_EN_MB12XX (INT32)

Maxbotix Sonar (mb12xx)

Reboot required: true

Module: drivers/distance_sensor/mb12xx

0
SENS_EN_SF0X (INT32)

Lightware laser rangefinder (serial)

Values:
  • 0: Disabled
  • 1: SF02
  • 2: SF10/a
  • 3: SF10/b
  • 4: SF10/c
  • 5: SF11/c

Reboot required: true

Module: drivers/distance_sensor/sf0x

0 > 4 0
SENS_EN_SF1XX (INT32)

Lightware SF1xx/SF20/LW20 laser rangefinder (i2c)

Values:
  • 0: Disabled
  • 1: SF10/a
  • 2: SF10/b
  • 3: SF10/c
  • 4: SF11/c
  • 5: SF/LW20

Reboot required: true

Module: drivers/distance_sensor/sf1xx

0 > 5 0
SENS_EN_TFMINI (INT32)

Benewake TFmini laser rangefinder

Reboot required: true

Module: drivers/distance_sensor/tfmini

0
SENS_EN_THERMAL (INT32)

Thermal control of sensor temperature

Values:
  • -1: Thermal control unavailable
  • 0: Thermal control off

Module: modules/sensors

-1
SENS_EN_TRANGER (INT32)

TeraRanger Rangefinder (i2c)

Values:
  • 0: Disabled
  • 1: Autodetect
  • 2: TROne
  • 3: TREvo60m
  • 4: TREvo600Hz

Reboot required: true

Module: drivers/distance_sensor/teraranger

0 > 3 0
SENS_FLOW_ROT (INT32)

PX4Flow board rotation

Comment: This parameter defines the yaw rotation of the PX4FLOW board relative to the vehicle body frame. Zero rotation is defined as X on flow board pointing towards front of vehicle. The recommneded installation default for the PX4FLOW board is with the Y axis forward (270 deg yaw).

Values:
  • 0: No rotation
  • 1: Yaw 45°
  • 2: Yaw 90°
  • 3: Yaw 135°
  • 4: Yaw 180°
  • 5: Yaw 225°
  • 6: Yaw 270°
  • 7: Yaw 315°

Reboot required: true

Module: modules/sensors

6

Snapdragon UART ESC

The module where these parameters are defined is: platforms/qurt/fc_addon/uart_esc.

NameDescriptionMin > Max (Incr.)DefaultUnits
UART_ESC_BAUD (INT32)

ESC UART baud rate

Comment: Default rate is 250Kbps, whic is used in off-the-shelf QRP ESC products.

250000
UART_ESC_MODEL (INT32)

ESC model

Comment: See esc_model_t enum definition in uart_esc_dev.h for all supported ESC model enum values.

Values:
  • 0: ESC_200QX
  • 1: ESC_350QX
  • 2: ESC_210QC
2
UART_ESC_MOTOR1 (INT32)

Motor 1 Mapping

4
UART_ESC_MOTOR2 (INT32)

Motor 2 Mapping

2
UART_ESC_MOTOR3 (INT32)

Motor 3 Mapping

1
UART_ESC_MOTOR4 (INT32)

Motor 4 Mapping

3

Subscriber Example

The module where these parameters are defined is: examples/subscriber.

NameDescriptionMin > Max (Incr.)DefaultUnits
SUB_INTERV (INT32)

Interval of one subscriber in the example in ms

100 ms
SUB_TESTF (FLOAT)

Float Demonstration Parameter in the Example

3.14

The module where these parameters are defined is: modules/syslink.

NameDescriptionMin > Max (Incr.)DefaultUnits
SLNK_RADIO_ADDR1 (INT32)

Operating address of the NRF51 (most significant byte)

231
SLNK_RADIO_ADDR2 (INT32)

Operating address of the NRF51 (least significant 4 bytes)

3890735079
SLNK_RADIO_CHAN (INT32)

Operating channel of the NRF51

0 > 125 80
SLNK_RADIO_RATE (INT32)

Operating datarate of the NRF51

0 > 2 2

System

NameDescriptionMin > Max (Incr.)DefaultUnits
LED_RGB_MAXBRT (INT32)

RGB Led brightness limit

Comment: Set to 0 to disable, 1 for minimum brightness up to 15 (max)

Module: drivers/rgbled

0 > 15 15
SYS_AUTOCONFIG (INT32)

Automatically configure default values

Comment: Set to 1 to reset parameters on next system startup (setting defaults). Platform-specific values are used if available. RC* parameters are preserved.

Values:
  • 0: Keep parameters
  • 1: Reset parameters

Module: modules/systemlib

0 > 1 0
SYS_AUTOSTART (INT32)

Auto-start script index

Comment: CHANGING THIS VALUE REQUIRES A RESTART. Defines the auto-start script used to bootstrap the system.

Reboot required: true

Module: modules/systemlib

0 > 99999 0
SYS_CAL_ACCEL (INT32)

Enable auto start of accelerometer thermal calibration at the next power up

Comment: 0 : Set to 0 to do nothing 1 : Set to 1 to start a calibration at next boot This parameter is reset to zero when the the temperature calibration starts. default (0, no calibration)

Module: modules/systemlib

0 > 1 0
SYS_CAL_BARO (INT32)

Enable auto start of barometer thermal calibration at the next power up

Comment: 0 : Set to 0 to do nothing 1 : Set to 1 to start a calibration at next boot This parameter is reset to zero when the the temperature calibration starts. default (0, no calibration)

Module: modules/systemlib

0 > 1 0
SYS_CAL_GYRO (INT32)

Enable auto start of rate gyro thermal calibration at the next power up

Comment: 0 : Set to 0 to do nothing 1 : Set to 1 to start a calibration at next boot This parameter is reset to zero when the the temperature calibration starts. default (0, no calibration)

Module: modules/systemlib

0 > 1 0
SYS_CAL_TDEL (INT32)

Required temperature rise during thermal calibration

Comment: A temperature increase greater than this value is required during calibration. Calibration will complete for each sensor when the temperature increase above the starting temeprature exceeds the value set by SYS_CAL_TDEL. If the temperature rise is insufficient, the calibration will continue indefinitely and the board will need to be repowered to exit.

Module: modules/systemlib

10 > ? 24 deg C
SYS_CAL_TMAX (INT32)

Maximum starting temperature for thermal calibration

Comment: Temperature calibration will not start if the temperature of any sensor is higher than the value set by SYS_CAL_TMAX.

Module: modules/systemlib

10 deg C
SYS_CAL_TMIN (INT32)

Minimum starting temperature for thermal calibration

Comment: Temperature calibration for each sensor will ignore data if the temperature is lower than the value set by SYS_CAL_TMIN.

Module: modules/systemlib

5 deg C
SYS_COMPANION (INT32)

TELEM2 as companion computer link

Comment: CHANGING THIS VALUE REQUIRES A RESTART. Configures the baud rate of the TELEM2 connector as companion computer interface.

Values:
  • 0: Disabled
  • 10: FrSky Telemetry
  • 20: Crazyflie (Syslink)
  • 57600: Companion Link (57600 baud, 8N1)
  • 157600: OSD (57600 baud, 8N1)
  • 257600: Command Receiver (57600 baud, 8N1)
  • 319200: Normal Telemetry (19200 baud, 8N1)
  • 338400: Normal Telemetry (38400 baud, 8N1)
  • 357600: Normal Telemetry (57600 baud, 8N1)
  • 419200: Iridium Telemetry (19200 baud, 8N1)
  • 519200: Minimal Telemetry (19200 baud, 8N1)
  • 538400: Minimal Telemetry (38400 baud, 8N1)
  • 557600: Minimal Telemetry (57600 baud, 8N1)
  • 921600: Companion Link (921600 baud, 8N1)
  • 1921600: ESP8266 (921600 baud, 8N1)
  • 3115200: Normal Telemetry (115200 baud, 8N1)
  • 5115200: Minimal Telemetry (115200 baud, 8N1)
  • 6460800: RTPS Client (460800 baud)

Reboot required: true

Module: modules/systemlib

0 > 6460800 157600
SYS_FMU_TASK (INT32)

Run the FMU as a task to reduce latency

Comment: If true, the FMU will run in a separate task instead of on the work queue. Set this if low latency is required, for example for racing. This is a trade-off between RAM usage and latency: running as a task, it requires a separate stack and directly polls on the control topics, whereas running on the work queue, it runs at a fixed update rate.

Reboot required: true

Module: drivers/px4fmu

0
SYS_HAS_BARO (INT32)

Control if the vehicle has a barometer

Comment: Disable this if the board has no barometer, such as some of the the Omnibus F4 SD variants. If disabled, the preflight checks will not check for the presence of a barometer.

Reboot required: true

Module: modules/systemlib

1
SYS_HAS_MAG (INT32)

Control if the vehicle has a magnetometer

Comment: Disable this if the board has no magnetometer, such as the Omnibus F4 SD. If disabled, the preflight checks will not check for the presence of a magnetometer.

Reboot required: true

Module: modules/systemlib

1
SYS_HITL (INT32)

Enable HITL mode on next boot

Comment: While enabled the system will boot in HITL mode and not enable all sensors and checks. When disabled the same vehicle can be normally flown outdoors.

Reboot required: true

Module: modules/systemlib

0
SYS_LOGGER (INT32)

SD logger

Values:
  • 0: sdlog2 (legacy)
  • 1: logger (default)

Reboot required: true

Module: modules/systemlib

0 > 1 1
SYS_MC_EST_GROUP (INT32)

Set multicopter estimator group

Comment: Set the group of estimators used for multicopters and VTOLs

Values:
  • 1: local_position_estimator, attitude_estimator_q
  • 2: ekf2

Reboot required: true

Module: modules/systemlib

1 > 2 2
SYS_PARAM_VER (INT32)

Parameter version

Comment: This monotonically increasing number encodes the parameter compatibility set. whenever it increases parameters might not be backwards compatible and ground control stations should suggest a fresh configuration.

Module: modules/systemlib

0 > ? 1
SYS_RESTART_TYPE (INT32)

Set restart type

Comment: Set by px4io to indicate type of restart

Values:
  • 0: Data survives resets
  • 1: Data survives in-flight resets only
  • 2: Data does not survive reset

Module: modules/systemlib

0 > 2 2
SYS_STCK_EN (INT32)

Enable stack checking

Module: modules/systemlib

1
SYS_USE_IO (INT32)

Set usage of IO board

Comment: Can be used to use a standard startup script but with a FMU only set-up. Set to 0 to force the FMU only set-up.

Reboot required: true

Module: drivers/px4io

0 > 1 1

Testing

NameDescriptionMin > Max (Incr.)DefaultUnits
TEST_1 (INT32)

Module: systemcmds/tests

2
TEST_2 (INT32)

Module: systemcmds/tests

4
TEST_3 (FLOAT)

Module: systemcmds/tests

5.0
TEST_D (FLOAT)

Module: lib/controllib/controllib_test

0.01
TEST_DEV (FLOAT)

Module: lib/controllib/controllib_test

2.0
TEST_D_LP (FLOAT)

Module: lib/controllib/controllib_test

10.0
TEST_HP (FLOAT)

Module: lib/controllib/controllib_test

10.0
TEST_I (FLOAT)

Module: lib/controllib/controllib_test

0.1
TEST_I_MAX (FLOAT)

Module: lib/controllib/controllib_test

1.0
TEST_LP (FLOAT)

Module: lib/controllib/controllib_test

10.0
TEST_MAX (FLOAT)

Module: lib/controllib/controllib_test

1.0
TEST_MEAN (FLOAT)

Module: lib/controllib/controllib_test

1.0
TEST_MIN (FLOAT)

Module: lib/controllib/controllib_test

-1.0
TEST_P (FLOAT)

Module: lib/controllib/controllib_test

0.2
TEST_PARAMS (INT32)

Module: systemcmds/tests

12345678
TEST_RC2_X (INT32)

Module: systemcmds/tests

16
TEST_RC_X (INT32)

Module: systemcmds/tests

8
TEST_TRIM (FLOAT)

Module: lib/controllib/controllib_test

0.5

Thermal Compensation

The module where these parameters are defined is: modules/sensors.

NameDescriptionMin > Max (Incr.)DefaultUnits
TC_A0_ID (INT32)

ID of Accelerometer that the calibration is for

0
TC_A0_SCL_0 (FLOAT)

Accelerometer scale factor - X axis

1.0
TC_A0_SCL_1 (FLOAT)

Accelerometer scale factor - Y axis

1.0
TC_A0_SCL_2 (FLOAT)

Accelerometer scale factor - Z axis

1.0
TC_A0_TMAX (FLOAT)

Accelerometer calibration maximum temperature

100.0
TC_A0_TMIN (FLOAT)

Accelerometer calibration minimum temperature

0.0
TC_A0_TREF (FLOAT)

Accelerometer calibration reference temperature

25.0
TC_A0_X0_0 (FLOAT)

Accelerometer offset temperature ^0 polynomial coefficient - X axis

0.0
TC_A0_X0_1 (FLOAT)

Accelerometer offset temperature ^0 polynomial coefficient - Y axis

0.0
TC_A0_X0_2 (FLOAT)

Accelerometer offset temperature ^0 polynomial coefficient - Z axis

0.0
TC_A0_X1_0 (FLOAT)

Accelerometer offset temperature ^1 polynomial coefficient - X axis

0.0
TC_A0_X1_1 (FLOAT)

Accelerometer offset temperature ^1 polynomial coefficient - Y axis

0.0
TC_A0_X1_2 (FLOAT)

Accelerometer offset temperature ^1 polynomial coefficient - Z axis

0.0
TC_A0_X2_0 (FLOAT)

Accelerometer offset temperature ^2 polynomial coefficient - X axis

0.0
TC_A0_X2_1 (FLOAT)

Accelerometer offset temperature ^2 polynomial coefficient - Y axis

0.0
TC_A0_X2_2 (FLOAT)

Accelerometer offset temperature ^2 polynomial coefficient - Z axis

0.0
TC_A0_X3_0 (FLOAT)

Accelerometer offset temperature ^3 polynomial coefficient - X axis

0.0
TC_A0_X3_1 (FLOAT)

Accelerometer offset temperature ^3 polynomial coefficient - Y axis

0.0
TC_A0_X3_2 (FLOAT)

Accelerometer offset temperature ^3 polynomial coefficient - Z axis

0.0
TC_A1_ID (INT32)

ID of Accelerometer that the calibration is for

0
TC_A1_SCL_0 (FLOAT)

Accelerometer scale factor - X axis

1.0
TC_A1_SCL_1 (FLOAT)

Accelerometer scale factor - Y axis

1.0
TC_A1_SCL_2 (FLOAT)

Accelerometer scale factor - Z axis

1.0
TC_A1_TMAX (FLOAT)

Accelerometer calibration maximum temperature

100.0
TC_A1_TMIN (FLOAT)

Accelerometer calibration minimum temperature

0.0
TC_A1_TREF (FLOAT)

Accelerometer calibration reference temperature

25.0
TC_A1_X0_0 (FLOAT)

Accelerometer offset temperature ^0 polynomial coefficient - X axis

0.0
TC_A1_X0_1 (FLOAT)

Accelerometer offset temperature ^0 polynomial coefficient - Y axis

0.0
TC_A1_X0_2 (FLOAT)

Accelerometer offset temperature ^0 polynomial coefficient - Z axis

0.0
TC_A1_X1_0 (FLOAT)

Accelerometer offset temperature ^1 polynomial coefficient - X axis

0.0
TC_A1_X1_1 (FLOAT)

Accelerometer offset temperature ^1 polynomial coefficient - Y axis

0.0
TC_A1_X1_2 (FLOAT)

Accelerometer offset temperature ^1 polynomial coefficient - Z axis

0.0
TC_A1_X2_0 (FLOAT)

Accelerometer offset temperature ^2 polynomial coefficient - X axis

0.0
TC_A1_X2_1 (FLOAT)

Accelerometer offset temperature ^2 polynomial coefficient - Y axis

0.0
TC_A1_X2_2 (FLOAT)

Accelerometer offset temperature ^2 polynomial coefficient - Z axis

0.0
TC_A1_X3_0 (FLOAT)

Accelerometer offset temperature ^3 polynomial coefficient - X axis

0.0
TC_A1_X3_1 (FLOAT)

Accelerometer offset temperature ^3 polynomial coefficient - Y axis

0.0
TC_A1_X3_2 (FLOAT)

Accelerometer offset temperature ^3 polynomial coefficient - Z axis

0.0
TC_A2_ID (INT32)

ID of Accelerometer that the calibration is for

0
TC_A2_SCL_0 (FLOAT)

Accelerometer scale factor - X axis

1.0
TC_A2_SCL_1 (FLOAT)

Accelerometer scale factor - Y axis

1.0
TC_A2_SCL_2 (FLOAT)

Accelerometer scale factor - Z axis

1.0
TC_A2_TMAX (FLOAT)

Accelerometer calibration maximum temperature

100.0
TC_A2_TMIN (FLOAT)

Accelerometer calibration minimum temperature

0.0
TC_A2_TREF (FLOAT)

Accelerometer calibration reference temperature

25.0
TC_A2_X0_0 (FLOAT)

Accelerometer offset temperature ^0 polynomial coefficient - X axis

0.0
TC_A2_X0_1 (FLOAT)

Accelerometer offset temperature ^0 polynomial coefficient - Y axis

0.0
TC_A2_X0_2 (FLOAT)

Accelerometer offset temperature ^0 polynomial coefficient - Z axis

0.0
TC_A2_X1_0 (FLOAT)

Accelerometer offset temperature ^1 polynomial coefficient - X axis

0.0
TC_A2_X1_1 (FLOAT)

Accelerometer offset temperature ^1 polynomial coefficient - Y axis

0.0
TC_A2_X1_2 (FLOAT)

Accelerometer offset temperature ^1 polynomial coefficient - Z axis

0.0
TC_A2_X2_0 (FLOAT)

Accelerometer offset temperature ^2 polynomial coefficient - X axis

0.0
TC_A2_X2_1 (FLOAT)

Accelerometer offset temperature ^2 polynomial coefficient - Y axis

0.0
TC_A2_X2_2 (FLOAT)

Accelerometer offset temperature ^2 polynomial coefficient - Z axis

0.0
TC_A2_X3_0 (FLOAT)

Accelerometer offset temperature ^3 polynomial coefficient - X axis

0.0
TC_A2_X3_1 (FLOAT)

Accelerometer offset temperature ^3 polynomial coefficient - Y axis

0.0
TC_A2_X3_2 (FLOAT)

Accelerometer offset temperature ^3 polynomial coefficient - Z axis

0.0
TC_A_ENABLE (INT32)

Thermal compensation for accelerometer sensors

0 > 1 0
TC_B0_ID (INT32)

ID of Barometer that the calibration is for

0
TC_B0_SCL (FLOAT)

Barometer scale factor - X axis

1.0
TC_B0_TMAX (FLOAT)

Barometer calibration maximum temperature

75.0
TC_B0_TMIN (FLOAT)

Barometer calibration minimum temperature

5.0
TC_B0_TREF (FLOAT)

Barometer calibration reference temperature

40.0
TC_B0_X0 (FLOAT)

Barometer offset temperature ^0 polynomial coefficient

0.0
TC_B0_X1 (FLOAT)

Barometer offset temperature ^1 polynomial coefficients

0.0
TC_B0_X2 (FLOAT)

Barometer offset temperature ^2 polynomial coefficient

0.0
TC_B0_X3 (FLOAT)

Barometer offset temperature ^3 polynomial coefficient

0.0
TC_B0_X4 (FLOAT)

Barometer offset temperature ^4 polynomial coefficient

0.0
TC_B0_X5 (FLOAT)

Barometer offset temperature ^5 polynomial coefficient

0.0
TC_B1_ID (INT32)

ID of Barometer that the calibration is for

0
TC_B1_SCL (FLOAT)

Barometer scale factor - X axis

1.0
TC_B1_TMAX (FLOAT)

Barometer calibration maximum temperature

75.0
TC_B1_TMIN (FLOAT)

Barometer calibration minimum temperature

5.0
TC_B1_TREF (FLOAT)

Barometer calibration reference temperature

40.0
TC_B1_X0 (FLOAT)

Barometer offset temperature ^0 polynomial coefficient

0.0
TC_B1_X1 (FLOAT)

Barometer offset temperature ^1 polynomial coefficients

0.0
TC_B1_X2 (FLOAT)

Barometer offset temperature ^2 polynomial coefficient

0.0
TC_B1_X3 (FLOAT)

Barometer offset temperature ^3 polynomial coefficient

0.0
TC_B1_X4 (FLOAT)

Barometer offset temperature ^4 polynomial coefficient

0.0
TC_B1_X5 (FLOAT)

Barometer offset temperature ^5 polynomial coefficient

0.0
TC_B2_ID (INT32)

ID of Barometer that the calibration is for

0
TC_B2_SCL (FLOAT)

Barometer scale factor - X axis

1.0
TC_B2_TMAX (FLOAT)

Barometer calibration maximum temperature

75.0
TC_B2_TMIN (FLOAT)

Barometer calibration minimum temperature

5.0
TC_B2_TREF (FLOAT)

Barometer calibration reference temperature

40.0
TC_B2_X0 (FLOAT)

Barometer offset temperature ^0 polynomial coefficient

0.0
TC_B2_X1 (FLOAT)

Barometer offset temperature ^1 polynomial coefficients

0.0
TC_B2_X2 (FLOAT)

Barometer offset temperature ^2 polynomial coefficient

0.0
TC_B2_X3 (FLOAT)

Barometer offset temperature ^3 polynomial coefficient

0.0
TC_B2_X4 (FLOAT)

Barometer offset temperature ^4 polynomial coefficient

0.0
TC_B2_X5 (FLOAT)

Barometer offset temperature ^5 polynomial coefficient

0.0
TC_B_ENABLE (INT32)

Thermal compensation for barometric pressure sensors

0 > 1 0
TC_G0_ID (INT32)

ID of Gyro that the calibration is for

0
TC_G0_SCL_0 (FLOAT)

Gyro scale factor - X axis

1.0
TC_G0_SCL_1 (FLOAT)

Gyro scale factor - Y axis

1.0
TC_G0_SCL_2 (FLOAT)

Gyro scale factor - Z axis

1.0
TC_G0_TMAX (FLOAT)

Gyro calibration maximum temperature

100.0
TC_G0_TMIN (FLOAT)

Gyro calibration minimum temperature

0.0
TC_G0_TREF (FLOAT)

Gyro calibration reference temperature

25.0
TC_G0_X0_0 (FLOAT)

Gyro rate offset temperature ^0 polynomial coefficient - X axis

0.0
TC_G0_X0_1 (FLOAT)

Gyro rate offset temperature ^0 polynomial coefficient - Y axis

0.0
TC_G0_X0_2 (FLOAT)

Gyro rate offset temperature ^0 polynomial coefficient - Z axis

0.0
TC_G0_X1_0 (FLOAT)

Gyro rate offset temperature ^1 polynomial coefficient - X axis

0.0
TC_G0_X1_1 (FLOAT)

Gyro rate offset temperature ^1 polynomial coefficient - Y axis

0.0
TC_G0_X1_2 (FLOAT)

Gyro rate offset temperature ^1 polynomial coefficient - Z axis

0.0
TC_G0_X2_0 (FLOAT)

Gyro rate offset temperature ^2 polynomial coefficient - X axis

0.0
TC_G0_X2_1 (FLOAT)

Gyro rate offset temperature ^2 polynomial coefficient - Y axis

0.0
TC_G0_X2_2 (FLOAT)

Gyro rate offset temperature ^2 polynomial coefficient - Z axis

0.0
TC_G0_X3_0 (FLOAT)

Gyro rate offset temperature ^3 polynomial coefficient - X axis

0.0
TC_G0_X3_1 (FLOAT)

Gyro rate offset temperature ^3 polynomial coefficient - Y axis

0.0
TC_G0_X3_2 (FLOAT)

Gyro rate offset temperature ^3 polynomial coefficient - Z axis

0.0
TC_G1_ID (INT32)

ID of Gyro that the calibration is for

0
TC_G1_SCL_0 (FLOAT)

Gyro scale factor - X axis

1.0
TC_G1_SCL_1 (FLOAT)

Gyro scale factor - Y axis

1.0
TC_G1_SCL_2 (FLOAT)

Gyro scale factor - Z axis

1.0
TC_G1_TMAX (FLOAT)

Gyro calibration maximum temperature

100.0
TC_G1_TMIN (FLOAT)

Gyro calibration minimum temperature

0.0
TC_G1_TREF (FLOAT)

Gyro calibration reference temperature

25.0
TC_G1_X0_0 (FLOAT)

Gyro rate offset temperature ^0 polynomial coefficient - X axis

0.0
TC_G1_X0_1 (FLOAT)

Gyro rate offset temperature ^0 polynomial coefficient - Y axis

0.0
TC_G1_X0_2 (FLOAT)

Gyro rate offset temperature ^0 polynomial coefficient - Z axis

0.0
TC_G1_X1_0 (FLOAT)

Gyro rate offset temperature ^1 polynomial coefficient - X axis

0.0
TC_G1_X1_1 (FLOAT)

Gyro rate offset temperature ^1 polynomial coefficient - Y axis

0.0
TC_G1_X1_2 (FLOAT)

Gyro rate offset temperature ^1 polynomial coefficient - Z axis

0.0
TC_G1_X2_0 (FLOAT)

Gyro rate offset temperature ^2 polynomial coefficient - X axis

0.0
TC_G1_X2_1 (FLOAT)

Gyro rate offset temperature ^2 polynomial coefficient - Y axis

0.0
TC_G1_X2_2 (FLOAT)

Gyro rate offset temperature ^2 polynomial coefficient - Z axis

0.0
TC_G1_X3_0 (FLOAT)

Gyro rate offset temperature ^3 polynomial coefficient - X axis

0.0
TC_G1_X3_1 (FLOAT)

Gyro rate offset temperature ^3 polynomial coefficient - Y axis

0.0
TC_G1_X3_2 (FLOAT)

Gyro rate offset temperature ^3 polynomial coefficient - Z axis

0.0
TC_G2_ID (INT32)

ID of Gyro that the calibration is for

0
TC_G2_SCL_0 (FLOAT)

Gyro scale factor - X axis

1.0
TC_G2_SCL_1 (FLOAT)

Gyro scale factor - Y axis

1.0
TC_G2_SCL_2 (FLOAT)

Gyro scale factor - Z axis

1.0
TC_G2_TMAX (FLOAT)

Gyro calibration maximum temperature

100.0
TC_G2_TMIN (FLOAT)

Gyro calibration minimum temperature

0.0
TC_G2_TREF (FLOAT)

Gyro calibration reference temperature

25.0
TC_G2_X0_0 (FLOAT)

Gyro rate offset temperature ^0 polynomial coefficient - X axis

0.0
TC_G2_X0_1 (FLOAT)

Gyro rate offset temperature ^0 polynomial coefficient - Y axis

0.0
TC_G2_X0_2 (FLOAT)

Gyro rate offset temperature ^0 polynomial coefficient - Z axis

0.0
TC_G2_X1_0 (FLOAT)

Gyro rate offset temperature ^1 polynomial coefficient - X axis

0.0
TC_G2_X1_1 (FLOAT)

Gyro rate offset temperature ^1 polynomial coefficient - Y axis

0.0
TC_G2_X1_2 (FLOAT)

Gyro rate offset temperature ^1 polynomial coefficient - Z axis

0.0
TC_G2_X2_0 (FLOAT)

Gyro rate offset temperature ^2 polynomial coefficient - X axis

0.0
TC_G2_X2_1 (FLOAT)

Gyro rate offset temperature ^2 polynomial coefficient - Y axis

0.0
TC_G2_X2_2 (FLOAT)

Gyro rate offset temperature ^2 polynomial coefficient - Z axis

0.0
TC_G2_X3_0 (FLOAT)

Gyro rate offset temperature ^3 polynomial coefficient - X axis

0.0
TC_G2_X3_1 (FLOAT)

Gyro rate offset temperature ^3 polynomial coefficient - Y axis

0.0
TC_G2_X3_2 (FLOAT)

Gyro rate offset temperature ^3 polynomial coefficient - Z axis

0.0
TC_G_ENABLE (INT32)

Thermal compensation for rate gyro sensors

0 > 1 0

UAVCAN

NameDescriptionMin > Max (Incr.)DefaultUnits
CANNODE_BITRATE (INT32)

UAVCAN CAN bus bitrate

Module: modules/uavcannode

20000 > 1000000 1000000
CANNODE_NODE_ID (INT32)

UAVCAN Node ID

Comment: Read the specs at http://uavcan.org to learn more about Node ID.

Module: modules/uavcannode

1 > 125 120
ESC_BITRATE (INT32)

UAVCAN CAN bus bitrate

Module: modules/uavcanesc

20000 > 1000000 1000000
ESC_NODE_ID (INT32)

UAVCAN Node ID

Comment: Read the specs at http://uavcan.org to learn more about Node ID.

Module: modules/uavcanesc

1 > 125 120
UAVCAN_BITRATE (INT32)

UAVCAN CAN bus bitrate

Reboot required: true

Module: modules/uavcan

20000 > 1000000 1000000 bit/s
UAVCAN_ENABLE (INT32)

UAVCAN mode

Comment: 0 - UAVCAN disabled. 1 - Enables support for UAVCAN sensors without dynamic node ID allocation and firmware update. 2 - Enables support for UAVCAN sensors with dynamic node ID allocation and firmware update. 3 - Enables support for UAVCAN sensors and actuators with dynamic node ID allocation and firmware update. Also sets the motor control outputs to UAVCAN.

Values:
  • 0: Disabled
  • 1: Sensors Manual Config
  • 2: Sensors Automatic Config
  • 3: Sensors and Actuators (ESCs) Automatic Config

Reboot required: true

Module: modules/uavcan

0 > 3 0
UAVCAN_ESC_IDLT (INT32)

UAVCAN ESC will spin at idle throttle when armed, even if the mixer outputs zero setpoints

Reboot required: true

Module: modules/uavcan

1
UAVCAN_NODE_ID (INT32)

UAVCAN Node ID

Comment: Read the specs at http://uavcan.org to learn more about Node ID.

Reboot required: true

Module: modules/uavcan

1 > 125 1

VTOL Attitude Control

The module where these parameters are defined is: modules/vtol_att_control.

NameDescriptionMin > Max (Incr.)DefaultUnits
VT_ARSP_BLEND (FLOAT)

Transition blending airspeed

Comment: Airspeed at which we can start blending both fw and mc controls. Set to 0 to disable.

0.00 > 30.00 (1) 8.0 m/s
VT_ARSP_TRANS (FLOAT)

Transition airspeed

Comment: Airspeed at which we can switch to fw mode

0.00 > 30.00 (1) 10.0 m/s
VT_B_DEC_MSS (FLOAT)

Approximate deceleration during back transition

Comment: The approximate deceleration during a back transition in m/s/s Used to calculate back transition distance in mission mode. A lower value will make the VTOL transition further from the destination waypoint.

0.00 > 20.00 (1) 2.0 m/s/s
VT_B_REV_DEL (FLOAT)

Delay in seconds before applying back transition throttle Set this to a value greater than 0 to give the motor time to spin down

Comment: unit s

0 > 10 (1) 0.0
VT_B_REV_OUT (FLOAT)

Output on airbrakes channel during back transition Used for airbrakes or with ESCs that have reverse thrust enabled on a seperate channel Airbrakes need to be enables for your selected model/mixer

0 > 1 (0.01) 0.0
VT_B_TRANS_DUR (FLOAT)

Duration of a back transition

Comment: Time in seconds used for a back transition

0.00 > 20.00 (1) 4.0 s
VT_B_TRANS_RAMP (FLOAT)

Back transition MC motor ramp up time

Comment: This sets the duration during wich the MC motors ramp up to the commanded thrust during the back transition stage.

0.0 > 20.0 3.0 s
VT_B_TRANS_THR (FLOAT)

Target throttle value for the transition to hover flight. standard vtol: pusher tailsitter, tiltrotor: main throttle

Comment: Note for standard vtol: For ESCs and mixers that support reverse thrust on low PWM values set this to a negative value to apply active breaking For ESCs that support thrust reversal with a control channel please set VT_B_REV_OUT and set this to a positive value to apply active breaking

-1 > 1 (0.01) 0.0
VT_DWN_PITCH_MAX (FLOAT)

Maximum allowed down-pitch the controller is able to demand. This prevents large, negative lift values being created when facing strong winds. The vehicle will use the pusher motor to accelerate forward if necessary

0.0 > 45.0 5.0
VT_ELEV_MC_LOCK (INT32)

Lock elevons in multicopter mode

Comment: If set to 1 the elevons are locked in multicopter mode

1
VT_FWD_THRUST_SC (FLOAT)

Fixed wing thrust scale for hover forward flight

Comment: Scale applied to fixed wing thrust being used as source for forward acceleration in multirotor mode. This technique can be used to avoid the plane having to pitch down a lot in order to move forward. Setting this value to 0 (default) will disable this strategy.

0.0 > 2.0 0.0
VT_FW_ALT_ERR (FLOAT)

Adaptive QuadChute

Comment: Maximum negative altitude error for fixed wing flight. If the altitude drops below this value below the altitude setpoint the vehicle will transition back to MC mode and enter failsafe RTL.

0.0 > 200.0 0.0
VT_FW_DIFTHR_EN (INT32)

Differential thrust in forwards flight

Comment: Set to 1 to enable differential thrust in fixed-wing flight.

0 > 1 0
VT_FW_DIFTHR_SC (FLOAT)

Differential thrust scaling factor

Comment: This factor specifies how the yaw input gets mapped to differential thrust in forwards flight.

0.0 > 1.0 (0.1) 0.1
VT_FW_MIN_ALT (FLOAT)

QuadChute Altitude

Comment: Minimum altitude for fixed wing flight, when in fixed wing the altitude drops below this altitude the vehicle will transition back to MC mode and enter failsafe RTL

0.0 > 200.0 0.0
VT_FW_MOT_OFFID (INT32)

The channel number of motors that must be turned off in fixed wing mode

0 > 12345678 (1) 0
VT_FW_PERM_STAB (INT32)

Permanent stabilization in fw mode

Comment: If set to one this parameter will cause permanent attitude stabilization in fw mode. This parameter has been introduced for pure convenience sake.

0
VT_FW_QC_P (INT32)

QuadChute Max Pitch

Comment: Maximum pitch angle before QuadChute engages Above this the vehicle will transition back to MC mode and enter failsafe RTL

0 > 180 0
VT_FW_QC_R (INT32)

QuadChute Max Roll

Comment: Maximum roll angle before QuadChute engages Above this the vehicle will transition back to MC mode and enter failsafe RTL

0 > 180 0
VT_F_TRANS_DUR (FLOAT)

Duration of a front transition

Comment: Time in seconds used for a transition

0.00 > 20.00 (1) 5.0 s
VT_F_TRANS_THR (FLOAT)

Target throttle value for the transition to fixed wing flight. standard vtol: pusher tailsitter, tiltrotor: main throttle

0.0 > 1.0 (0.01) 1.0
VT_F_TR_OL_TM (FLOAT)

Airspeed less front transition time (open loop)

Comment: The duration of the front transition when there is no airspeed feedback available.

1.0 > 30.0 6.0 seconds
VT_IDLE_PWM_MC (INT32)

Idle speed of VTOL when in multicopter mode

900 > 2000 (1) 900 us
VT_MOT_COUNT (INT32)

VTOL number of engines

0 > 8 (1) 0
VT_PSHER_RMP_DT (FLOAT)

Defines the time window during which the pusher throttle will be ramped up linearly to VT_F_TRANS_THR during a transition to fixed wing mode. Zero or negative values will produce an instant throttle rise to VT_F_TRANS_THR

? > 20 (0.01) 3.0
VT_TILT_FW (FLOAT)

Position of tilt servo in fw mode

0.0 > 1.0 (0.01) 1.0
VT_TILT_MC (FLOAT)

Position of tilt servo in mc mode

0.0 > 1.0 (0.01) 0.0
VT_TILT_TRANS (FLOAT)

Position of tilt servo in transition mode

0.0 > 1.0 (0.01) 0.3
VT_TRANS_MIN_TM (FLOAT)

Front transition minimum time

Comment: Minimum time in seconds for front transition.

0.0 > 20.0 2.0 s
VT_TRANS_P2_DUR (FLOAT)

Duration of front transition phase 2

Comment: Time in seconds it should take for the rotors to rotate forward completely from the point when the plane has picked up enough airspeed and is ready to go into fixed wind mode.

0.1 > 5.0 (0.01) 0.5 s
VT_TRANS_TIMEOUT (FLOAT)

Front transition timeout

Comment: Time in seconds after which transition will be cancelled. Disabled if set to 0.

0.00 > 30.00 (1) 15.0 s
VT_TYPE (INT32)

VTOL Type (Tailsitter=0, Tiltrotor=1, Standard=2)

Values:
  • 0: Tailsitter
  • 1: Tiltrotor
  • 2: Standard
0 > 2 0
VT_WV_YAWR_SCL (FLOAT)

Weather-vane yaw rate scale

Comment: The desired yawrate from the controller will be scaled in order to avoid yaw fighting against the wind.

0.0 > 1.0 (0.01) 0.15

Wind Estimator

The module where these parameters are defined is: modules/wind_estimator.

NameDescriptionMin > Max (Incr.)DefaultUnits
WEST_BETA_GATE (INT32)

Gate size for true sideslip fusion

Comment: Sets the number of standard deviations used by the innovation consistency test.

1 > 5 1 SD
WEST_BETA_NOISE (FLOAT)

Wind estimator sideslip measurement noise

0 > 1 0.3 rad
WEST_SC_P_NOISE (FLOAT)

Wind estimator true airspeed scale process noise

0 > 0.1 0.0001
WEST_TAS_GATE (INT32)

Gate size for true airspeed fusion

Comment: Sets the number of standard deviations used by the innovation consistency test.

1 > 5 3 SD
WEST_TAS_NOISE (FLOAT)

Wind estimator true airspeed measurement noise

0 > 4 1.4 m/s
WEST_W_P_NOISE (FLOAT)

Wind estimator wind process noise

0 > 1 0.1 m/s/s

Miscellaneous

NameDescriptionMin > Max (Incr.)DefaultUnits
EXFW_HDNG_P (FLOAT)

Module: examples/fixedwing_control

0.1
EXFW_PITCH_P (FLOAT)

Module: examples/fixedwing_control

0.2
EXFW_ROLL_P (FLOAT)

Module: examples/fixedwing_control

0.2
RV_YAW_P (FLOAT)

Module: examples/rover_steering_control

0.1
SEG_Q2V (FLOAT)

Module: examples/segway

1.0
SEG_TH2V_I (FLOAT)

Module: examples/segway

0.0
SEG_TH2V_I_MAX (FLOAT)

Module: examples/segway

0.0
SEG_TH2V_P (FLOAT)

Module: examples/segway

10.0

results matching ""

    No results matching ""